INVARIANT SUBSPACES WITH INVARIANT COMPLEMENTS

C. F. SCHUBERT¹

1. Introduction. Let H_n denote the Hardy class of functions in H^2 of the unit disk Δ with values in the complex Hilbert space C_n . If $z: H_n \rightarrow H_n$ denotes the operator of multiplication by z and z^* is its operator conjugate on H_n , then one consequence of Theorem 1 of [3] is that the only projection P on H_n which commutes with both z and z^* can be represented as a constant $n \times n$ matrix $P = [P_{ij}]$ which acts on H_n in the following way: if $u = \{u_i\}_{i=1}^n \subset H_n$ then $Pu = \{\sum_i P_{ij}u_i\}_{i=1}^n$. An alternative interpretation is that the only orthogonal projection P on H_n which commutes with z is necessarily of the above form where $[P_{ij}]$ is an orthogonal projection on C_n . While orthogonal projection is the natural projection in Hilbert space it is still only one of many and we examine here the class of projections on H_n which commute with z but not necessarily with z^* . In H_1 (= H^2) essentially nothing new happens. The consequences of Theorem 1 of [3] quoted above imply that if P is a projection on H_1 which commutes with z and z^* then P = 0 or I. The same is true even if P merely commutes with z e.g. [4, Problem 116]. In H₂ things are different. If P denotes the matrix

$$\begin{pmatrix} z, & z \\ 1-z, & 1-z \end{pmatrix}$$

then P is a projection on H_2 which commutes with z, but is not a matrix of constants. The projection P decomposes H_2 into the direct sum $S \oplus T$ of two invariant subspaces

$$S = \{(u_1, u_2) = (zw, (1-z)w) \mid w \in H^2)\}$$

and

$$T = \{(u_1, u_2) = (w, -w) \mid w \in H^2\}.$$

The problem of determining the projections on H_n which commute with z is equivalent to the problem: Determine all translation invariant subspace S of H_n which have a translation invariant comple-

Received by the editors September 10, 1968.

¹ The preparation of this paper was supported in part by National Science Foundation grant no. GP-8922.

² Unless stated otherwise, "projection" means "continuous projection" and "subspace" means "closed subspace."

ment in H_n , i.e. subspaces S such that $zS \subset S$ and $H_n = S \oplus T$ for some subspace T satisfying $zT \subset T$. Call such a subspace S invariantly complemented, or i.e. for brevity. The simplest nontrivial i.e. subspaces of H_n are of the form $S = AH_p$ where A is an $n \times p$ matrix of elements of H^{∞} which by the addition of n-p columns can be made into an isomorphism of H_n onto itself. In fact these are the only i.e. subspaces; see Theorem 2.1 below. The remaining results of this paper are extensions to matrices of elements from H^{∞} , of some elementary properties of matrices with complex entries. One of these, the corollary following Theorem 2.2', is a natural extension of the Corona Theorem differing slightly from that of Fuhrmann [2].

The significant results needed here are the Corona Theorem [1], Lax's characterization of the invariant subspaces of H_n [5], [6], and the fact that any continuous linear operator $A: H_n \to H_n$ which commutes with z is representable as an $n \times n$ matrix of elements of H^{∞} and A operates on H_n by matrix multiplication. Moreover if A is a topological linear isomorphism of H_n onto itself then $|\det A(z)| \ge \epsilon > 0$ for some ϵ and all $z \in \Delta$.

To conclude this introduction we note a property of i.c. subspaces which will not be used later, but which has some independent interest. If S is i.c. and $u \in H_n$ is such that $zu \in S$, then if P is a projection onto S commuting with z, zu = Pzu = zPu, i.e. z(u - Pu) = 0 or $u = Pu \in S$. This extends immediately to polynomials, i.e. if p(z) is a polynomial and $u \in H_n$ is such that $p(z)u \in S$, then $u \in S$, and taking weak limits is true even if $p(z) \in H^{\infty}$, since the polynomials are dense in the weak star topology on H^{∞} . This property is not shared by all invariant subspaces, e.g. if S is the invariant subspace z^2H^2 of H^2 and p(z) = z, then $z \in H^2$ and $z^2 = p(z) \cdot z \in S$ but $z \notin S$. There is some evidence to suggest that this property is characteristic of i.c. subspaces. The following lemma is a sample of such evidence.

LEMMA 1.1. Let ϕ_1, \dots, ϕ_n be elements of H^{∞} such that $\sum |\phi_j|^2 = 1$ a.e. on |z| = 1 and let $S \subset H_n$ be the invariant subspace of H_n , $\{(\phi_1 u, \dots, \phi_n u) | u \in H^2\}$. A necessary and sufficient condition that for every Blashke product p(z), $u \in H_n$ and $pu \in S$ together imply $u \in S$, is that $\sum |\phi_j(z)|^2 > 0$ in Δ .

The necessary and sufficient condition that S be i.e. is that $\sum |\phi_j(z)|^2 \ge \epsilon > 0$ in Δ , (Theorem 2.2 below). The above lemma uses only Blashke products and not the whole of H^{∞} , but none the less is suggestive of the stronger result.

PROOF OF LEMMA 1.1. Note first that it is sufficient to consider only all p of the form $(z-a)/(1-\bar{a}z)$, for |a|<1. If $\sum |\phi_j(z)|^2>0$ and

 $u = (u_1, \dots, u_n) \in H_n$ is such that $u_i p = \phi_i v$ for all i and some $v \in H^2$ then v(a) = 0 and so $p^{-1}v \in H^2$ whence $u \in S$ as required. Conversely, suppose that the ϕ_i have a common zero at $a \in \Delta$. Put $p(z) = (z-a)/(1-\bar{a}z)$ and $u = (\phi_1/p, \dots, \phi_n/p)$. Then $u \in H_n$ and $pu \in S$ but $u \in S$, completing the proof.

2. **Results.** In all that follows we adopt the convention that if S is a subspace of H_n and $z \in \Delta$, S(z) is the subspace of C_n spanned by the numerical values of the elements of S at the point z; in particular $H_n(z) = C_n$. We also identify $H_p \times H_q$ with H_{p+q} .

LEMMA 2.1. If there exists a continuous linear isomorphism T of H_n onto H_m which commutes with z then m=n.

PROOF. Since zT = Tz, T can be represented as an $m \times n$ matrix of elements of H^{∞} . By assumption $C_m = T(z)C_n$ for any $z \in \Delta$ and so $n \ge m$. Similarly T^{-1} as a map of H_m onto H_n being continuous by the closed graph theorem and also commuting with z, we have $n \le m$, and so m = n.

We now have our main theorem.

THEOREM 2.1. If $S \subset H_n$ is an i.e. subspace then there exists a linear isomorphism A of H_n onto itself such that zA = Az and $S = AP_pH_n$ where P_p denotes the projection of H_n onto H_p obtained by the coordinate projection $P_p\{u_1, \dots, u_n\} = \{u_1, \dots, u_p, 0, \dots, 0\}$.

PROOF. Since S is i.c. there does exist a continuous projection P of H_n onto S such that zP = Pz and P may be realized as a matrix multiplication operator whose entries are elements of H^{∞} . I-P also commutes with z and projects H_n onto a complementary subspace T. Both S and T are translation invariant and so by Lax's Theorem there exist $n \times p$ and $n \times q$ matrices A_S and A_T such that $A_S^*(z)A_S(z) = I$ and $A_T^*(z)A_T(z) = I$ for almost all z on |z| = 1 and $S = A_S H_p$, $T = A_T H_q$. Here * denotes the conjugate. In particular A_S is invertible and $A_S^{-1}: S \rightarrow H_p$ is continuous and commutes with z. Similarly for T. Let $A: H_{p+q} = H_p \times H_q \rightarrow H_n$ be given by $A(u, v) = A_S u + A_T v$, where $u \in H_p$, $v \in H_q$ and $B: H_n \rightarrow H_p \times H_q$ be given by $Bu = A_S^{-1} Pu + A_T^{-1}(I-P)u$, then AB = I, BA = I and A is continuous and commutes with z. Thus by Lemma 2.1 p+q=n, and identifying H_{p+q} with H_n , we have $S = A_S H_p = A P_p H_n$ as asserted, and A clearly commutes with z.

Since A is invertible, so also is A(z) and thus for all $z \in \Delta$, dim S(z) = p. We shall refer to this constant integer p, improperly, as dim S. As further consequences of Theorem 2.1 we now have that $S = H_n$, if

 $S \subset H_n$, S is i.c., and dim S = n, cf. H^2 as mentioned in the introduction. Also the only irreducible i.c. subspaces of H_n have dim 1 and are isomorphic to H^2 .

In order to give an analytic characterization of i.c. subspaces we shall need the estimate of the following elementary lemma.

LEMMA 2.2. Let B be an invertible $n \times n$ matrix of complex numbers such that $|B_{ij}| \leq \beta$. Suppose A and C are $n \times p$ (p < n) matrices such that BA = C. Then if $\{A^k\}$ $(\{C^k\})$ denotes the set of all $p \times p$ submatrices of A (C), we have

$$(3.1) \quad \sum_{k} \mid \det C^{k} \mid \ge \det B \binom{n}{p} \beta^{p-n} [(n-p)!]^{-1} \sum_{k} \mid \det A^{k} \mid.$$

PROOF. Choosing any one of the matrices A^k , augment the matrix A by the addition, on the right, of n-p columns each containing n-1 zeros and one one to obtain an $n \times n$ matrix $A^{(k)}$ such that $\left| \det A^{(k)} \right| = \left| \det A^k \right|$. Then C is the matrix of the first p columns of $BA^{(k)}$. Expanding det $BA^{(k)}$ by elements of the last row, then expanding each of the (n-1)th order determinants so obtained by elements of their last rows and repeating the process as often as necessary, we obtain

$$|\det B| |\det A^k| \le \sum_i |\det C^j| \beta^{n-p}(n-p)!$$

On summing this inequality over all submatrices A^k and rewriting, we obtain the inequality (3.1).

The estimate of this lemma is certainly very poor but it is sufficient for what follows.

THEOREM 2.2. Let $S = AH_p$ (where A*A = I on |z| = 1) be a translation invariant subspace of H_n of dim p. Then S is i.e. if and only if there exists an $\epsilon > 0$ such that

(3.2)
$$\sum |\det A^k(z)| \ge \epsilon \quad \text{for all } z \in \Delta,$$

where $\{A^{j}(z)\}\$ is the set of all $p \times p$ submatrices of the $n \times p$ matrix A(z).

PROOF. Suppose that S is i.c. By Theorem 2.1 there exists a matrix B(z) of elements of H^{∞} such that, for all $z \in \Delta$, $|\det B(z)| \ge \alpha > 0$, $|B_{ij}(z)| \le \beta$ and $(B(z)A(z))_{ij} = \delta_{ij}$ for $i \le p$, and zero otherwise. By Lemma 2.2 the inequality (3.2) now holds for some ϵ .

Conversely suppose that (3.2) is valid. Assume first that p = 1, i.e. $A(z) = \{A_j(z)\}, j = 1, \dots, n$, and $\sum |A_j(z)| \ge \epsilon$ in Δ . By the Corona Theorem [1] there exist functions $\theta_j(z) \in H^{\infty}$ such that $\sum_i \theta_i A_i = 1$ in

1969]

 Δ . Let $P: H_n \rightarrow H_n$ be the matrix operator given by $P_{ij} = A_i \theta_j$, $i, j = 1, \dots, n$, then P is a projection onto S which commutes with z. Thus S is i.c. as required.

Now assume the theorem true for all S with dim S < p (p > 1). If (3.2) holds it is easily checked that for some $\epsilon > 0$, $\sum_{i} |A_{jp}(z)| \ge \epsilon$ and $\sum |\det B^k(z)| \ge \epsilon$ in Δ , where B is the $n \times (p-1)$ matrix obtained from A by deleting the last column. By assumption then, both $S' = \{\{A_{jp}u\} | u \in H^2\}$ and $S'' = BH_{p-1}$ are i.c. and S = S' + S''. Let D^{-1} be the isomorphism of Theorem 2.1 such that $S'' = D^{-1}P_{p-1}H_n$ then with the proper identifications, $(DB)_{ij} = \delta_{ij}$ if $i \le p-1$ and zero otherwise while $(DA)_{ij} = \delta_{ij}$ if $i \le p-1$, and zero if i > p-1 & j < p-1, or j > p. But applying Lemma 2.2 we have that

$$\sum_{k} | \det(DA)^{k} | \ge \epsilon'$$

for some ϵ' . However now

$$\sum_{k} \left| \det(DA)^{k} \right| = \sum_{j=p}^{n} \left| (DA)_{jp} \right|.$$

Thus $S_1 = \{\{(DA)_{jp}u\}_{j=p}^n | u \in H^2\}$ is an i.c. subspace of H_{n-p+1} of dim 1. Also in this coordinate system $S'' = H_{p-1}$. But now $S = S' + S'' = S_1 \oplus H_{p-1}$ and since $H_{n-p+1} \cap H_{p-1} = 0$, and S_1 is an i.c. subspace of H_{n-p+1} , S is itself i.c. Since the property of being i.c. is rather trivially preserved under linear isomorphisms of H_n which commute with z, S in the original coordinate system is i.c. as required.

The last paragraph of the proof of Theorem 2.2 yields with a little modification a necessary and sufficient condition that the sum of two i.c. subspaces be i.c. We omit the proof but state the result.

THEOREM 2.2'. If $S = AH_p$ and $S' = A'H_q$ are i.c. subspaces of dim p and q respectively, then a necessary and sufficient condition that S+S' be i.c. of dim p+q is that

$$\sum |\det C^k| \ge \epsilon > 0 \quad \text{in } \Delta$$

where $\{C^k\}$ is the set of $(p+q) \times (p+q)$ submatrices of the $n \times (p+q)$ matrix C whose columns are those of A and those of A'.

As a statement about matrices of elements from H^{∞} , Theorem 2.2 has an interesting interpretation. Observing that the fact $A^*A = I$ was not used in the proof but appeared merely because we chose to use the Lax representation for S, we have on combining Theorems 2.1 and 2.2,

COROLLARY. If A is an $n \times p$ matrix of elements from H^{∞} then there exists a nonsingular matrix B of elements from H^{∞} such that $(BA)_{ij} = \delta_{ij}$ if $i \leq p$ and zero otherwise if and only if $\sum |\det A^k| \geq \epsilon > 0$ in Δ .

A particular case of this Corollary (essentially the case n=rp, r an integer, but without showing B may be chosen nonsingular) has been given by Fuhrmann [2, Theorem 3.1].

REFERENCES

- 1. L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559.
- 2. P. A. Fuhrmann, On the corona theorem and its application to spectral problems in Hilbert space, Trans. Amer. Math. Soc. 132 (1968), 55-66.
 - 3. P. R. Halmos, Shifts on Hilbert spaces, Crelle's Journal 208 (1961), 102-112.
 - 4. —, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967.
 - 5. H. Helson, Lectures on invariant subspaces, Academic Press, New York, 1964.
 - 6. P. D. Lax, Translation invariant spaces, Acta. Math. 101 (1959), 163-178.

University of California, Los Angeles