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1. Introduction. Let Hn denote the Hardy class of functions in

H2 of the unit disk A with values in the complex Hubert space C„. If

z: H„—>Hn denotes the operator of multiplication by z and z* is its

operator conjugate on Hn, then one consequence of Theorem 1 of [3]

is that the only projection2 P on H„ which commutes with both z and

z* can be represented as a constant «X« matrix P = [Py] which acts

on Hn in the following way: if u= {uj}j,lQHnthenPu= { £yPy«i}*-j.

An alternative interpretation is that the only orthogonal projection

P on Hn which commutes with z is necessarily of the above form where

[Pij] is an orthogonal projection on C„. While orthogonal projection

is the natural projection in Hubert space it is still only one of many

and we examine here the class of projections on Hn which commute

with z but not necessarily with z*. In Hi (=H2) essentially nothing

new happens. The consequences of Theorem 1 of [3] quoted above

imply that if P is a projection on Hi which commutes with z and z*

then P = 0 or J. The same is true even if P merely commutes with z

e.g. [4, Problem 116]. In H2 things are different. If P denotes the

matrix

/    ., .   \

Vl - z,    1 - z)

then P is a projection on H2 which commutes with z, but is not a

matrix of constants. The projection P decomposes H2 into the direct

sum S® T of two invariant subspaces

5 = {(«i, Ui) = (zw, (1 — z)w) I w Q H2)}

and

T = {(«i, Ui) = (w, —w) | w Q H2}.

The problem of determining the projections on Hn which commute

with z is equivalent to the problem: Determine all translation in-

variant subspace S of Hn which have a translation invariant comple-
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ment in 77„, i.e. subspaces 5 such that zSES and 77„ = 58 T for some

subspace T satisfying zTET. Call such a subspace 5 invariantly

complemented, or i.e. for brevity. The simplest nontrivial i.e. sub-

spaces of 77„ are of the form 5 = 477p where 4 is an nXp matrix of

elements of 77°° which by the addition of n—p columns can be made

into an isomorphism of 77n onto itself. In fact these are the only i.e.

subspaces; see Theorem 2.1 below. The remaining results of this

paper are extensions to matrices of elements from 77°°, of some ele-

mentary properties of matrices with complex entries. One of these,

the corollary following Theorem 2.2', is a natural extension of the

Corona Theorem differing slightly from that of Fuhrmann [2].

The significant results needed here are the Corona Theorem [l],

Lax's characterization of the invariant subspaces of 77n [5], [ó], and

the fact that any continuous linear operator 4: 77„—»77„ which com-

mutes with z is representable as an «X» matrix of elements of 7700

and 4 operates on 77„ by matrix multiplication. Moreover if 4 is a

topological linear isomorphism of 77„ onto itself then | det 4 (z) |

^6>0 for some e and all z£A.

To conclude this introduction we note a property of i.e. subspaces

which will not be used later, but which has some independent interest.

If 5 is i.e. and w£77„ is such that zuES, then if P is a projection onto

5 commuting with z, zu = Pzu = zPu, i.e. z(u — Pu)=0 or u = PuES.

This extends immediately to polynomials, i.e. if p(z) is a polynomial

and uEHn is such that p(z)uES, then w£5, and taking weak limits

is true even if p(z)EH°°, since the polynomials are dense in the weak

star topology on 77°°. This property is not shared by all invariant sub-

spaces, e.g. if 5 is the invariant subspace z2772 of 772 and p(z) =z, then

z£772 and z2 = p(z)-zES but z(£S. There is some evidence to suggest

that this property is characteristic of i.e. subspaces. The following

lemma is a sample of such evidence.

Lemma 1.1. Let <pi, • • ■ , <pn be elements of Hx such that El0/12= 1

a.e.   on   |z| =1   and  let  5£77„  be  the invariant  subspace  of Hn,

{(<biu, • • • , 4>nu)\ uEH2}. A necessary and sufficient condition that

for every Blashke product p(z), uEHn and pu ES together imply uES,

is that EI <t>i(z) |2 > 0 in A.

The necessary and sufficient condition that 5 be i.e. isthat El<£/(2)|2

ä|€>0 in A, (Theorem 2.2 below). The above lemma uses only

Blashke products and not the whole of 77°°, but none the less is sug-

gestive of the stronger result.

Proof of Lemma 1.1. Note first that it is sufficient to consider only

all p of the form (z-a)/(l-äz), for |a| <1. If E|0y(z)|2>O and
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u = (wi, • • • , Un) QHn is such that Uip =(¡>iV for all i and some vQH2

then v(a) =0 and so p~xvQH2 whence uQS as required. Conversely,

suppose that the <pj have a common zero at aQA. Put p(z)

= (z—a)/(l — âz) and u = (4>i/p, ■ • ■ , <pn/p). Then uQHn and puQS

but uÇfcS, completing the proof.

2. Results. In all that follows we adopt the convention that if »S

is a subspace of Hn and zQA, S(z) is the subspace of C„ spanned by

the numerical values of the elements of 5 at the point z; in particular

Hn(z) = C„. We also identify HvXHq with Hp+q.

Lemma 2.1. // there exists a continuous linear isomorphism T of Hn

onto Hm which commutes with z then m = n.

Proof. Since zT= Tz, T can be represented as an mXn matrix of

elements of H*. By assumption Cm=T(z)Cn for any zQA and so

n^m. Similarly T"1 as a map of Hm onto Hn being continuous by the

closed graph theorem and also commuting with z, we have n^m, and

so m = n.

We now have our main theorem.

Theorem 2.1. If SQHn is an i.e. subspace then there exists a linear

isomorphism A of Hn onto itself such that zA=Az and S = APpHn where

Pp denotes the projection of Hn onto Hp obtained by the coordinate projec-

tion Pp{tti, ••-,«„} = {«i, • • • , «j,, 0, • • • , o}.

Proof. Since S is i.e. there does exist a continuous projection P of

Hn onto 5 such that zP=Pz and P may be realized as a matrix multi-

plication operator whose entries are elements of Hx. I — P also com-

mutes with z and projects H„ onto a complementary subspace T.

Both 5 and T are translation invariant and so by Lax's Theorem

there exist nXp and nXq matrices As and AT such that A*(z)As(z)

— I and Af(z)AT(z) =1 for almost all z on |z| =1 and S = ASHP,

T = ATHq. Here * denotes the conjugate. In particular A s is invertible

and Ag l: S-+Hp is continuous and commutes with z. Similarly for T.

Let A: Hp+g — HpXHq—^Hn be given by A(u, v) =Asu+ATv, where

uQHp, vQHq and B: Hn-^HpXHq be given by Bu^A^Pu

+Af1(I—P)u, then AB=I, BA=I and A is continuous and com-

mutes with z. Thus by Lemma 2.1 p+q — n, and identifying Hp+q

with Hn, we have S = AsHp = APPHn as asserted, and A clearly com-

mutes with z.

Since A is invertible, so also is ^4(z) and thus for all zQA, dim S(z)

= p. We shall refer to this constant integer p, improperly, as dim S.

As further consequences of Theorem 2.1 we now have that S = Hn, if
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SEHn, S is i.e., and dim S = n, ci. H2 as mentioned in the introduc-

tion. Also the only irreducible i.e. subspaces of 77„ have dim 1 and

are isomorphic to 772.

In order to give an analytic characterization of i.e. subspaces we

shall need the estimate of the following elementary lemma.

Lemma 2.2. Let B be an invertible nXn matrix of complex numbers

such that \Bi,\ ^ß. Suppose A and C are nXp (p<n) matrices such

that BA = C. Then if {Ak} ({Ck}) denotes the set of all pXp sub-

matrices of A (C), we have

(3.1) E I det C* |   ^ det B (   ) /3*-»[(n - p) l]"1 E | det 4* | .
* \p/ k

Proof. Choosing any one of the matrices Ak, augment the matrix

4 by the addition, on the right, of n — p columns each containing n — 1

zeros and one one to obtain an nXn matrix 4(4> such that | det A(k) \

= | det 4*|. Then C is the matrix of the first p columns of P4f*).

Expanding det BAik) by elements of the last row, then expanding

each of the (n — l)th order determinants so obtained by elements of

their last rows and repeating the process as often as necessary, we

obtain

| det B | | det 4* |   g E I det C'\ ßn~'(n - p)!
i

On summing this inequality over all submatrices 4* and rewriting,

we obtain the inequality (3.1).

The estimate of this lemma is certainly very poor but it is sufficient

for what follows.

Theorem 2.2. Let S = AHP (where A*A=I on \z\ =1) be a transla-

tion invariant subspace of Hn of dim p. Then S is i.e. if and only if there

exists an e>0 such that

(3.2) E I det 4*(z) |  ^ e       for all z £ A,

where {A >(z) } is the set of all pXp submatrices of thenXp matrix A (z).

Proof. Suppose that 5 is i.e. By Theorem 2.1 there exists a matrix

B(z) of elements of 77° such that, for all z£A, | det 73(a)| ^a>0,

|T3í¿(z)| á|8 and (73(z)4(a))y = 8¿y for i~è.p, and zero otherwise. By

Lemma 2.2 the inequality (3.2) now holds for some e.

Conversely suppose that (3.2) is valid. Assume first that p = l, i.e.

4(a) = {4y(a)},/=l, • ■ ■ , n, and EMj(z)| ^e in A. By the Corona
Theorem [l] there exist functions öJ(a)£77c0 such that ^ßjAj = l in
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A. Let P:77„—>77„ be the matrix operator given by Pa — Afij, i, j

= 1, • • • , n, then P is a projection onto 5 which commutes with a.

Thus S is i.e. as required.

Now assume the theorem true for all S with dim S<p (p>l). If

(3.2) holds it is easily checked that for some e>0, E; Mj'p(2)| =e

and E|det73*(z)| ^e in A, where 73 is the nX(p — Y) matrix obtained

from 4 by deleting the last column. By assumption then, both S'

= {{4jpm}|m£772} and 5"=P77p_i are i.e. and S = S'+S". Let

7J>_1 be the isomorphism of Theorem 2.1 such that 5" = 7>~1Pp_i77„

then with the proper identifications, (DB)n = bi¡ if i^p — i and zero

otherwise while (DA)a = Sa iii^p — 1, and zero if i>p — 1 &j<p — i,

or j>p. But applying Lemma 2.2 we have that

E I det(7>4)* I   ̂  a'
it

for some «'. However now

E|det(P4)*|   =t\(DA)jp\.
k i=p

Thus 5i= { {(DA)jPu}"=p\uEH2} is an i.e. subspace of 77n_p+i of

dim 1. Also in this coordinate system S" = 77p_i. But now S = S' + S"

= S1877p_i and since Hn-p+i(~\Hp-i = 0, and Si is an i.e. subspace of

77„_j,+1, 5 is itself i.e. Since the property of being i.e. is rather trivially

preserved under linear isomorphisms of 77n which commute with z, S

in the original coordinate system is i.e. as required.

The last paragraph of the proof of Theorem 2.2 yields with a little

modification a necessary and sufficient condition that the sum of two

i.e. subspaces be i.e. We omit the proof but state the result.

Theorem 2.2'. If S = AHP and S' = A'Hq are i.e. subspaces of dim p

and q respectively, then a necessary and sufficient condition that S+S'

be i.e. of dim p+q is that

E I det C* I   ̂  e > 0       in A

where {Ck} is the set of (p+q)X(p+q) submatrices of the nX(p+q)

matrix C whose columns are those of A and those of A'.

As a statement about matrices of elements from 77e0, Theorem 2.2

has an interesting interpretation. Observing that the fact 4 *4 = 7

was not used in the proof but appeared merely because we chose to

use the Lax representation for S, we have on combining Theorems 2.1

and 2.2,
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Corollary. If A is an nXp matrix of elements from H°° then there

exists a nonsingular matrix B of elements from Hx such that (BA)a = Sy

if ig,p and zero otherwise if and only if 21 det Ak\ ^ e> 0 î« A.

A particular case of this Corollary (essentially the case n = rp, r

an integer, but without showing B may be chosen nonsingular) has

been given by Fuhrmann [2, Theorem 3.1].
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