PRODUCTS OF TWO ONE-PARAMETER SUBGROUPS

MORIKUNI GOTO¹

Let R denote the field of real numbers.

THEOREM. Let G be a Lie group with Lie algebra L. Let X and Y be linearly independent elements of L. If the set $\exp RX \cdot \exp RY$ contains a one-parameter subgroup $\exp RZ$ such that $\exp RX$ $\exp RZ$ and $\exp RY \triangleright \exp RZ$, then $\{X, Y\}$ forms a basis of a two-dimensional subalgebra of L.

PROOF. We can find a positive number ϵ and analytic functions $\phi(t) = a_1t + a_2t^2 + \cdots$ and $\psi(t) = b_1t + b_2t^2 + \cdots$, defined in the interval $(-\epsilon, \epsilon)$, such that we have

$$\exp tZ = \exp \phi(t)X \cdot \exp \psi(t)Y, \quad -\epsilon < t < \epsilon.$$

On the other hand, for real numbers ϕ and ψ , sufficiently close to 0, we have

$$\exp \phi X \cdot \exp \psi Y = \exp \{ (\phi X + \psi Y) + \frac{1}{2} [\phi X, \psi Y] + \cdots \}.$$

Hence for $t \in \mathbb{R}$, with |t| small enough, we have

$$tZ = \phi(t)X + \psi(t)Y + \frac{1}{2}[\phi(t)X, \psi(t)Y] + \cdots$$

= $t(a_1X + b_1Y) + t^2(a_2X + b_2Y + \frac{1}{2}a_1b_1[X, Y]) + \cdots,$

and it follows that

$$Z = a_1 X + b_1 Y,$$
 $a_2 X + b_2 Y + \frac{1}{2} a_1 b_1 [X, Y] = 0.$

Because $a_1 \neq 0$ and $b_1 \neq 0$, we have that

$$[X, Y] = -\frac{2}{a_1b_1}(a_2X + b_2Y).$$

University of Pennsylvania

Received by the editors January 31, 1969.

¹ Research supported in part by NSF Grant GP 4503.