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J. von Neumann's theory of almost periodic functions on an arbi-

trary group [3] begins with a definition of almost periodicity which

was first formulated for functions on the group of real numbers by

S. Bochner [l]. In the present paper, a nonstandard form of this

definition is used to obtain two other characterizations of almost

periodicity, each of which generalizes H. Bohr's original definition

involving translation numbers. These results form the basis for a

description of what might be called the Bohr compactification of a

group with respect to an almost periodic function. Finally, a non-

standard proof is given of the result, essentially due to A. Weil [5],

that the class of continuous functions on the compactification is

isometrically isomorphic to a certain class of almost periodic func-

tions.

We assume familiarity with the properties of an enlargement of a

mathematical structure, in the sense of A. Robinson, and with the

notation of [4].

Let G be a group with identity e and let C(G) denote the algebra of

complex valued functions on G under the supnorm. A set of functions

from C(G) is called conditionally compact (c.c.) if every sequence of

functions taken from the set contains a fundamental subsequence.

Definition 1. A function / in C(G) is called right almost peri-

odic (r.a.p.) if the set R; of all functions f(xa) (where a is a param-

eter running over G) is c.c; it is called left almost periodic (l.a.p.) if

the set Lf of all functions/(ax) is c.c; it is called almost periodic

(a.p.) if it is r.a.p. and l.a.p.

This is von Neumann's definition, from which it is not hard to

show that r.a.p. and l.a.p. functions are bounded. We therefore re-

strict our attention to the metric space B(G) of bounded functions

on G.

According to nonstandard metric space theory, conditional com-

pactness can be characterized as follows: a subset N of a metric space

M is conditionally compact if and only if for every element « in the

enlargement *N of N, there is a standard mEM whose distance from

n is infinitesimal [4, pp. 94, 102]. It follows that the nonstandard

analogue of Definition 1 is given by

Presented to the Society, April 4, 1969; received by the editors September 1, 1968.

1 This work was supported by National Science Foundation Grant GP-6955.

527



528 L. D. KUGLER [August

Theorem 1. A function f in B(G) is r.a.p. (l.a.p.) if and only if for

any element a of the enlargement *G of G, there is a function ga(x) (ha(x))

in B(G) such that for all xE*G, ga(x)~/(xa) (À0(x)~/(ax)).

The first of the two characterizations of almost periodicity given

below is well known and involves the notion of a relatively dense set.

The proof is nonstandard, and rests on a simple nonstandard condi-

tion for relative density.

Definition 2. A set EEG is said to be right relatively dense (r.r.d)

if there exist rx, ■ • • ,rnEG such thatU"=i TiE = G; E is left relatively

dense (l.r.d.) if there exist ri, • • • , rnEG such that U?,! En = G; E

is relatively dense (r.d.) if it is r.r.d. and l.r.d.

Theorem 2. A set EEG is r.r.d. if and only if for every aE*G,

GC\*Ea9i0; E is l.r.d. if and only if for every aE*G, Gr\a*E¿¿0.

Proof. Suppose first that E is not r.r.d., i.e., that for any fi, • • • ,

rnEG, there exists aEG such that a&iE, i=l, 2, • • • , n. Then the

relation R(r, a)<->a^r£ is concurrent in G, so by definition of an en-

largement, there exists a£*G such that for all rEG, a(£r*E, or

equivalently, r~lE*Ea~\ Thus Gr\*Ea~1 = 0.

Conversely, let Ti, • • • , r„EG, and suppose there exists aE*G

such that GC\*Ea = 0. Then r,(£*.Ea, i-\, 2, • • • , n. By transfer

to G, there exists aEG such that ntfzEa, i — 1, 2, • ■ ■ , n, so that

U?„i r^E^G. The first part of the theorem follows by contraposi-

tion. The proof of the second part is similar and will be omitted.

Given a function fEB(G) and any standard real number e>0, let

£(«>/) = {tEG\ for all y,z, EG, |/(yte)-/(yz)| <e}. The elements of

the sets E(t,f) are called translation elements for/.

Theorem 3. A function fEB(G) is r.a.p. (l.a.p.) if and only if

E(e,f) is r.r.d. (l.r.d.) for every e>0.fis a.p. if and only if E(e,f) is r.d.

for every e>0.

Proof. We consider only the r.a.p. case. To prove sufficiency, let

e>0 be standard and for aE*G, define gaEB(G) by ga(u) = °(f(ua)).

For any tEE(e/3,f), the statement (Vz) [|/(ete)-/(ez)| <e/3] holds

in B(G) and hence by transfer it holds in *B(G). Thus for all xEG,

| ga(tx) - ga(x) | ~ | f(txa) - f(xa) \   < e/3,

from which it follows that

(VI E *E(e/3,f))(Vx E *G)[\ga(lx) - ga(x) |   < e/2]

holds in *B(G). Now for any xE*G, *E(e/3,f)xi\G^0 by Theorem
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2, so there exists ZG*E(e/3,/) such that txEG. Now we have

\f(xa) - ga(x)\  è  \f(xa)-f(txa)\  + \f(txa) - ga(tx)\

+   I ga(tx)  - ga(x) I    <€

which proves that/(xa)~g0(x) for all xE*G. By Theorem 1,/is r.a.p.

To prove necessity, suppose that there exists a standard e>0, for

which E(e,f) is not r.r.d. Then for some aE*G, Gi\*E(e, f)a — 0, by
Theorem 2. Moreover, ii uEG and tEGa~x, then u~HEGa~l, and

there exists yE*G such that |/(yw-1Ze) —f(ye) | ^e. On the other hand,

there is by Theorem 1 a standard function gtEB(G) such that gt(yu_1)

~f(yu~H) for all yE*G. Hence for each tEGa-1 and uEG, the state-

ment

(i) (*y)[\ gt(yu~l) - f(y)\ *e/2]

holds in *B(G). Since g¡ and u are standard, (1) is defined and true in

B(G). It follows that for each tEGa-1, the statement

(2) (Vu)(ly)[\ gt(yu~^) - f(y)\  fc e/2]

holds in B(G) and, by transfer, in *B(G). Now (2) can be particular-

ized by assigning to u the value t, so for some yE*G,

I gt(yt~i) -f(y) I  = I gt(yt-i) -f(yt-H) \  ^ e/2.
This inequality contradicts the characteristic property of g( and

completes the proof.

We come now to a nonstandard characterization of almost periodic-

ity. ForfEB(G), let E(f) = {tE*G\ for all x, yE*G, f(xty)~f(xy)).

Theorem 4. ^4 function fEB(G) is r.a.p. (l.a.p.) if and only if for
every infinite positive integer N there exist rit • • • , tnE*G such that

Uil, uE(f) = *G(()li E(f)n = *G).

Proof. Sufficiency. If «>0 is standard, the sentence "there exist

ri, ■ ■ ■ , rNE*G such that UÍLi rt*E(e,f) = *G" holds in *5(G) because
*E(e,f)Z)£(/). The sentence is therefore true in B(G), where it asserts

that E(e,f) is r.r.d. Thus by Theorem 3,/ is r.a.p.

Necessity. Let e>0. By Theorem 3, there exist n, • • • , rnEG such

that U"-i r¿-E(e, /) =G. Let «(e) be the smallest integer « for which

this condition is satisfied. Then «(e) is clearly a decreasing function

of €, so that *«(e) is finite for all positive eqkO. It follows that if N is

any infinite positive integer, there is some positive €0—0 such that

*«(e0)SJiV, for if not, the internal set {e>0J *«(e)>ZV} would prop-

erly contain the external set of positive infinitesimals, in which case
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there would exist a positive e^O such that *«(e) >N,a contradiction.

Now by transfer to *B(G), the sentence "there exist r,G*G, i=l, 2,

■ ■ ■ , *w(e0), such that *G = Ur<*£(e0,/), (1 =^*«(éo))" is true. By

setting »"¿ = 7-1 for *n(e0)<i¿N, and noting that *E(e0, f)EE(f), we

have U¡!-i ?iE(f) = *G and the proof is complete.

It is easily seen that for any/£.73(G), E(f) is an invariant subgroup

of *c7 in analogy with the group of periods of a periodic function. Let

bjG denote the quotient group *G/E(f). Elements of bfG will be de-

noted by primed lower case letters. The function / has a natural ex-

tension/' defined on bfG by f'(xE(f)) =°(*/(x)). This definition is

clearly independent of the choice of the element xE*G to represent

the coset xE(f). The definition of/' is equivalent to the assertion that

/'(x')—/(x) for all xE*G, where */ and xE(f) have been abbreviated

to / and x', respectively.

The sets E(e, f), e>0, form an open basis at the identity for a

topology on G, and the sets E'(e, /') = {t'Eb/G] for all x', y'Eb/G,

|/(x'i'y') —f(x'y') | <e}, €>0, form an open basis at the identity for a

topology on b¡G. It is easy to verify that G and b¡G with these topolo-

gies are topological groups. The monads of the identity for the en-

largements *C7 and *b¡G are, respectively, E(f) and E'(f) = {t'E*b/G\

for all x', y'E*bfG,f'(x't'y')~f'(x'y')}.
The following theorems describe the relationship between G and

bfG where/ is a fixed almost periodic function on G.

Theorem 5. Let v denote the natural homomorphism of *G onto bfG.

Then v(G) is dense in bfG.

Proof. Let e>0 and suppose x'EbfG. Then x'=xE(f) for some

xE*G, and since/is (r.)a.p., *E(e/2, f)xC\G7£0. Hence there exists

y EG such that yx-1£*.E(e/2, /). Thus we have for all z, wE*G,

\f(zyx~1w) —f(zw) | <e/2. By the definition of/', it follows that for all

z', w'EbfG, \f'(z'y'x'-1w')—f'(z'w')\<e. Thus every basic open

neighborhood E'(e, f')x' of x'EbfG contains an element y'

= v(y)Ev(G). The proof is completed by using a similar argument

based on the left almost periodicity of/ to show that every basic open

neighborhood x'E'(e,f) of x' contains an element of v(G).

The natural homomorphism v: *G^>bfG is continuous in the sense

that for any standard y>0, v(*E(r,/2, f))EE'(r¡, /'). In fact, if

tE*E(v/2,f), then \f(xtz)-f(xz)\ <r¡/2 for all x, zE*G, so that for

all x' = v(x) and z' =v(z) in bfG, we have

|/'(xYz') -/'(xV)|   <v

because of the definition of/'. Thus t' =v(t)EE'(r],/'). Since the re-
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striction v0 of v to G is also continuous, it follows by transfer to *G

that *^o: *G—**bfG has the property that for any nonstandard real

number 77>0, *vo(*E(r¡/2, f))E*E(i), /). These continuity properties

are needed for the following important lemma.

Lemma. For any yE*G, v(y) and *v0(y) are in the same monad in

bfG.

Proof. Let 77 > 0 be standard. Since/ is a.p., there exists an element

u~1EGr\*E(ri/2, f)y~l. By the continuity properties of v and *v0,

v(u~ly)EE'(r}, /') and *vo(u~1y)E*E'(v, /')• Since the homomor-

phisms v and *p0 agree on G, it follows that both v(y) and *v0(y) are

elements of v(u)*E'(r¡, /') and hence that *v0(y)v(y)-1E*E'(2r), /').

But this is true for any standard r¡>0, so *Vo(y)v(y)~lEE'(f'), i.e.,

*v0(y) and v(y) are in the same monad in *b¡G.

Theorem 6. b¡G is compact.

Proof. The proof is based on the following nonstandard character-

ization of compactness: a topological space T is compact if and only

if every element of *T is in the monad of some element of T [4, p.

93]. Suppose x'E*b/G. Theorem 5 implies, by transfer to *B(G), that

given any nonstandard real number €>0, there exists yE*G such

that *E'(e,f')x' contains *Vo(y). Let y' =v(y)EbfG. By the lemma,

*vo(y) and v(y) are in the same monad in *bfG. But € can be chosen to

be infinitesimal. Hence x' and *v0(y) are in the same monad in *b/G,

because *E'(e, f')(ZE'(f'). By transitivity, x' is in the monad of the

point v(y) in b/G, and the proof is complete.

Theorem 7. b/G is a Hausdorff space.

Proof. A topological space Tis Hausdorff if and only if the monads

of distinct points of T are disjoint [4, p. 92]. Suppose x'^y' in b¡G.

Since the monads x'E'(f') and y'E'(f') are cosets of the subgroup

£'(/') of *b/G, it suffices to show that there exists a point in one monad

which is not in the other. Now x'=»'(x) =xE(f) and y'=v(y) —yE(f)

for some x, yE*G, so xE(f)C\yE(f) = 0 and y~lxEE(f). Thus for

some z, wE*G and some standard e>0, \f(zy~1xw)—f(zw)\ ^e. But

then by the definition of/', \f'(z'y'-1x'w')-f(z'w')\^t/2, which

shows that y'~lx'EE'(f'), i.e., x'Ey'E'(f'). Of course, x'Ex'E'(f'), so
the proof is complete.

Theorem 8. The set of all complex valued continuous functions on

bfG is isometrically isomorphic to the set of almost periodic functions g

on G such that E(g)Z)E(f).
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Proof. If g is continuous on bfG, then it is uniformly continuous,

since bfG is compact. It follows from the lemma that for any zE*G,

g'(v(z))~g'(*v0(z)). Define gEB(G) by g(u) =g'(u') =g'(vo(u)) for

uEG. Now for any x, yE*G and tEE(f), g(xty)=g'(*v0(xty)) and

g(xy)=g'(*vo(xy)) by transfer to *B(G), so

g(xiy) ~ g'(v(x)v(t)v(y)) = g'(v(x)v(y)) ~g(xy).

Here we have used the fact that v(t) is the identity in *bfG. Hence

E(f) EE(g) and thus E(g) must satisfy the conditions of Theorem 4.

Therefore g is a.p.

Now suppose g is a.p. on G with E(g)Z)E(f). Thus if tEE(f) EE(g),
then g(xiy)~g(xy) for all x, y£*C7, which means that g satisfies the

nonstandard criterion for uniform continuity with respect to the

E(e, f) topology (cf. [4, p. 111]). Hence for any 77>0, there exists

€>0 such that if tEE(e,f), then | g(xty)-g(xy)\ <r¡/2 for all x, yEG.

By transfer, if tE*E(e,f), then |g(x/y)-g(xy)| <r¡/2 for all x, yE*G.

Define g' on b¡G by g'(x') = °(g(x)) for x'EbfG. It is easy to check that

g' is well defined. To demonstrate the continuity of g', let v > 0, choose

€ as above, and suppose t'EE'(e/2,f) EbfG. Writing t' =v(t), it follows

from \f(xty)-f(xy)\^\f'(x't'y')-f'(x'y')\<€/2 that tE*E(t, /).
Now for any x', y'EbfG,

I g'ix't'y') - g'(x'y') I   =  \"(g(xly)) - °(g(xy)) \

~ I g(xty) - g(xy) I   <v/2.

So |g'(x'í'y')—g'(x'y')| <r¡ for all x', y'EbfG, which proves that g' is

(uniformly) continuous on bfG.

To show that the mappings g—*g' and g'—>g define a one-to-one

correspondence, it suffices to verify that they are inverses of one

another. Suppose first that g is a.p. Then g'(x') = °(g(x)) for x'EbfG,

and g' maps to the function h defined by h(x) =g'(x') for xEG. But

for xEG, g(x) =°(g(x)), so fe = g. Now let g' be continuous on ¿>/C

Then g(x)=g'(v0(x)) for xEG, and the image h' of g is defined by

Â'(x') = °(g(x)) for each x'EbfG. Thus A'(x') = °(g'(*"o(*)))- By the

lemma and the uniform continuity of g', g'(*i>o(x))^g'(v(x)) =g'(x')

for each xE*G, so h' = g'. It is easy to check that the correspondence

g<->g' is an isomorphism, and it is an isometry because

sup I g(x) I   = sup    I g(x) I = sup    I g'(x') I .
zeG x&G x'&ip
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