INDEPENDENCE OF A CERTAIN AXIOMATIC SYSTEM ## LINO GUTIERREZ-NOVOA To prove the independence of the system of axioms introduced in [1] we exhibit here ten models, each of them satisfying all the axioms but one; e.g. model M_5 fails to satisfy P_5 of [1]. We call model Γ the Euclidean 3-space with the usual vector structure, introduce a suitable order function ϕ and the usual notion of orthogonality. Let $A_i(i=1, 2, 3, 4)$ be the position vectors of four points and define: $$\phi(A_1, A_2, A_3, A_4) = \text{sign det } | A_2 - A_1, A_3 - A_1, A_4 - A_1 |.$$ Model Γ shows the relative consistency of the system. M_1 —In Γ , take a new order function: $\phi_1 = |\phi|$. M_2 —In Γ , change the sign of ϕ for exactly one nonsingular tetrad and its opposite. M_3 —Let the ϕ of Γ be identically 0. M_4 —Adjoin one point X to Γ and extend ϕ : $\phi(X, A_1, A_2, A_3) = \phi(O, A_1, A_2, A_3)$ where O is the origin and $A_i \in \Gamma$. M_5 —Vectors of Γ with integral components and ϕ restricted accordingly. M_6 —In the hyperbolic space H^3 take any orientation function for ϕ and keep the usual orthogonality notion. M_{τ} —Take the vectors of Γ with rational components and restrict ϕ . M_8 —Imbed Γ in the projective space P^3 adding the ideal plane Ω . Let γ be a real conic on Ω and define $l \perp \pi$ (in Γ) to mean $l \cap \Omega$ and $\pi \cap \Omega$ are pole and polar with respect to γ . M_9 —Same as before but $l \perp \pi$ is defined only if $l \cap \Omega$ is a two-tangent point with respect to γ . M_{10} —Let γ be an elliptic correlation, not a polarity, on Ω , and define $l \perp \pi$ accordingly. The proof is now complete. ## REFERENCE 1. L. Gutierrez-Novoa, Ten axioms for three-dimensional Euclidean geometry, Proc. Amer. Math. Soc. 19 (1958), 146-152. University of Alabama Received by the editors May 13, 1968.