INDEPENDENCE OF A CERTAIN AXIOMATIC SYSTEM

LINO GUTIERREZ-NOVOA

To prove the independence of the system of axioms introduced in [1] we exhibit here ten models, each of them satisfying all the axioms but one; e.g. model M_5 fails to satisfy P_5 of [1].

We call model Γ the Euclidean 3-space with the usual vector structure, introduce a suitable order function ϕ and the usual notion of orthogonality. Let $A_i(i=1, 2, 3, 4)$ be the position vectors of four points and define:

$$\phi(A_1, A_2, A_3, A_4) = \text{sign det } | A_2 - A_1, A_3 - A_1, A_4 - A_1 |.$$

Model Γ shows the relative consistency of the system.

 M_1 —In Γ , take a new order function: $\phi_1 = |\phi|$.

 M_2 —In Γ , change the sign of ϕ for exactly one nonsingular tetrad and its opposite.

 M_3 —Let the ϕ of Γ be identically 0.

 M_4 —Adjoin one point X to Γ and extend ϕ : $\phi(X, A_1, A_2, A_3) = \phi(O, A_1, A_2, A_3)$ where O is the origin and $A_i \in \Gamma$.

 M_5 —Vectors of Γ with integral components and ϕ restricted accordingly.

 M_6 —In the hyperbolic space H^3 take any orientation function for ϕ and keep the usual orthogonality notion.

 M_{τ} —Take the vectors of Γ with rational components and restrict ϕ .

 M_8 —Imbed Γ in the projective space P^3 adding the ideal plane Ω . Let γ be a real conic on Ω and define $l \perp \pi$ (in Γ) to mean $l \cap \Omega$ and $\pi \cap \Omega$ are pole and polar with respect to γ .

 M_9 —Same as before but $l \perp \pi$ is defined only if $l \cap \Omega$ is a two-tangent point with respect to γ .

 M_{10} —Let γ be an elliptic correlation, not a polarity, on Ω , and define $l \perp \pi$ accordingly.

The proof is now complete.

REFERENCE

1. L. Gutierrez-Novoa, Ten axioms for three-dimensional Euclidean geometry, Proc. Amer. Math. Soc. 19 (1958), 146-152.

University of Alabama

Received by the editors May 13, 1968.