
IDENTIFYING PERTURBATIONS WHICH PRESERVE
ASYMPTOTIC STABILITY1

AARON STRAUSS2 AND JAMES A. YORKE3

1. If the zero solution is uniform-asymptotically stable for the

vector ordinary differential equation

(E) x'=/(Z,x),

then it is also uniform-asymptotically stable for the perturbed equa-

tion

(P) y'=f(t,y) + g(t,y)

if / satisfies a uniform Lipschitz condition and if g is "sufficiently

small." Such sufficiently small g we will call permissible. This result

is known and the proof is essentially the same as the proof that a

Lipschitz, uniform-asymptotically stable system is totally stable [l,

p. 276]; namely, a positive definite, decrescent Lyapunov function V

exists for (E) satisfying Vß(t, x)^—c(|x|) and |grad V(t, x)\ ^b.

Therefore

VP(t, x) = VE(t, x) + (grad Vit, x), g(t, x)> g - \c(\ x\)

if \g(t, x)\ ^c(|x|)/2&. Thus an estimate on the size of permissible

perturbations g is provided in terms of a Lyapunov function associ-

ated with (E). If / has further special properties, so might V. In

this way Hahn [l, p. 282] proved the following:

Letfx(t, x) be continuous and bounded for Z|^0 and \x\ ¡£1. Suppose

that for all reale and some k^l,f(t, ex) —ckf(t, x). Then g(t, x)=o(\x\k)

is permissible.

The purpose of this paper is to establish estimates on the size of

permissible g in terms of the rate of approach to zero of the solutions

of (E). Using these estimates we can prove Hahn's theorem without

assuming that/ is differentiable.

2. Let Rn denote Euclidean «-space. Let (x, y) denote the inner

product of x and y in Rn, i.e., (x, y)=xryi+ • • • +x„y„. Let |x|

Presented to the Society, January 24, 1969; received by the editors November 13,

1968.
1 Sponsored by the Mathematics Research Center, United States Army, Madi-

son, Wisconsin, under Contract No. DA-31-124-ARO-D-462.

s Work supported in part by an NSF Postdoctoral Fellowship and NSF grant GP-

6167 at the Department of Mathematics, University of Maryland.

8 Work supported in part by NSF grant GP-7846 at the Institute for Fluid Dy-

namics and Applied Mathematics, University of Maryland.

513



514 AARON STRAUSS AND J. A. YORKE [August

= (x, x)1/2. Consider (E) and (P) where/ and g map [0, <x>)XRn

continuously into Rn. Assume/(i, 0) =g(t, 0) =0. Thus for each /0^0

and each Xo£i?", there is at least one solution x(t; t0, Xo) of (E) and

at least one solution y(t; t0, x0) of (P) through (to, x0) which are de-

fined for t in a neighborhood of t0. (We do not assume that the solu-

tions of (E) or (P) are uniquely determined by (to, x0).)

Definition 2.1. The zero solution is uniform-asymptotically stable

(UAS) for (E) if (i) for every e>0 there exists 5 = o(e)>0 such that

|x(i; to, Xo) | <e for all |x0| <S and t^t0^0, and if (ii) there exists

So>0 and for every v>0 there exists T = T(q) 2:0 such that | x(t; to, x0)|

<r] for |x0| <50, ¿osäO, and fîtto+T.

If the solutions of (E) are not uniquely determined by (t0, x0),

then the zero solution is UAS provided that (i) and (ii) above hold

for all the solutions through (to, x0).

Following Hahn [l, p. 7] we say that a real-valued function <£(•)

belongs to class K if, for some n>0, <p(-) is continuous and strictly

increasing on [0, ri] and <p(0) =0.

3. We begin with a lemma which characterizes uniform-asymptotic

stability in terms of certain auxiliary functions. These functions ap-

pear to be more useful for perturbation problems than those of

Hahn [l, p. 8]; however, Hahn's functions seem more useful for

converse theorems on Lyapunov functions [l, Chapter 6].

Lemma 3.1. The zero solution of (E) is UAS if and only if there exist

functions a(-) and ß(-) in K and a positive function r(-) such that

(3.1) a(8) < 5 ^ ß(o)        for 0 < Ô < 50,

and for all |x0| ^ô<ô0, ¿o^O, and íoáí = ¿o+r(o),

(3.2) |x(/;/0, x0)|   ^ ß(o)    and     \ x(tQ + t(S); t0, x0) |   ^ a(6).

Proof. If the zero solution is UAS, then /?(■) exists by [l, p. 173].

Choose a(S)=Jô. Now we can take t(5) = T(|S) by Definition 2.1.

Conversely, suppose (3.1) and (3.2) hold. Let e>0. Let S = 5(e)

exist so that 0<S<50 and ß(5) <«. Let |x0| ^5 and ¿0 = 0. Then

| x(/0 + r(5) : to, x0) \   = a(ô) < 5.

Therefore (3.2) holds with t0 replaced by í0+t(S) and x0 replaced by

x(io+r(5); t0, x0). Thus

| x(tB+ 2t(8) ; t0, xo) |   = a(h) < 5;

hence   (3.2)   holds  with   t0  replaced   by  î0+2t(ô).   By   induction
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|x(Z; Zo, x0)| ^ß(o)<e for all t^t0. Thus (i) of Definition 2.1 holds.

Nowchoose S„ = a(ô„_i) and Z„=T(Sn_i)-|-<„_ifor each « = 1, 2, • • •.

Since {ô„} is a decreasing sequence of positive numbers, there exists

#j^0 such that 5n—>ô as «—>o°. But 5n— a(5n)—*â— a(â) and 5„— a(dn)

= Ôn-5n+i->0. Hence a(û)=û. By (3.1), ê = 0. Let 77 >0. Choose

N—N(v) so large that 8n<o'(v), where 5(v) comes from (i) of Defini-

tion 2.1. Consider any solution x(- ; Z0, Xo) through (Zo, xo). Then

I x(Zi; Zo, Xo) I   =| x(Z0 + r(50); Z0, x0) |   ^ a(ô0) = èi-

Therefore, for some solution x(- ; tu x(k; Z0, x0)),

I x(Z2; Z0, x0) I   =| x(t2; tu x(h; Z0, x0)) |   5¡ a(5i) = ô2.

By repeating this argument, we have that

I x(Z¡v; t0, x0) I   =1 x(tN; Z#-i, x(Ziv_i; Z0, x0)) |   g <x(ôn-i) = 5jv-

Since ÔN<à(v), it follows that

I x(t; t0, x0) I   =| x(Z; tN, x(tN; Z0, x0)) |   < 77

for all t^tif = to-r-T(v) for some solution x(- ; Z«-, x(tx; Z0, Xo)), where

T(V) = r[a^-»(fio)] + r[a^-2>(5o)] + ■ ■ ■ + r[S„].

Thus (ii) of Definition 2.1 holds. Hence the zero solution is UAS and

Lemma 3.1 is proved.

We now restrict/ somewhat and prove a result concerning the dis-

tance of a solution of (P) from one of (E). A similar result appears

also in [2, Lemma 5.1].

Lemma 3.2. Suppose that for some y in the class K, some L>0, some

r>0, and all \x\ ^r, \y\ ^r, and Z^O, we have

(3.3) (x - y, f(t, x) - f(t, y))ÚL\x-y\\

(3.4) I «(<,*) I   ^7(|x|).

Let u>0, Zo^O, and let  \x(t; Z0, x0)| ^r and  \y(t; to, x0)| ^r for

to^t^to+u. Then for all to^t^to+u,

I x(t; t0, Xo) — y(t; Z0, x0) |   Ú 2y(r)ue2Lu.

Remark. If/ satisfies a uniform Lipschitz condition, i.e., |/(Z, x)

—f(t, y)\ ^L\x — y\ for all Z^O, |x| ^r, and |y| ^r, then/ satisfies

(3.3). Of course the converse is false, e.g. f(t, x) = —Zx3. If/ satisfies

(3.3), then solutions of (E) are uniquely determined by (Z0, xo) for

t>t0 but not necessarily for t<t0. Even in this case solutions of (P)

need not be uniquely determined for t>t0.
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Proof. Let x(t)=x(t; to, x0) and y(t)=y(t; t0, x0). Define X = sup

\x(t)-y(t)\ for toútúto+u. Then

<x'(0 - y'(0, x(t) - y(i)) = <x(0 - y(t),f(t, x(t)) -f(t, y(t)))

- (x(t)-y(t),g(t,y(t)));

hence

I x(t) - y(t) |2 g 2\y(r)u + f  2L \ x(s) - y(s) \2ds.
J t.

By Gronwall's inequality

I x(t) - y(t) |2 ^ 2\y(r)ue2L"

for all to^t^to+u. Therefore X2^2X7(r)ue2Lu from which the result

follows.

4. Our main result says that if / satisfies (3.3) and if the zero

solution is UAS for (E) with corresponding aE(-), ßE(-), and t(-),

then by choosing appropriate larger aP(-) and ßp(-), there will be

room enough to perturb (E) by certain functions g and still have

that the zero solution is UAS, but with corresponding ctp(-), ßp(-)

and the same t(-).

Theorem 4.1. Let f satisfy (3.3). Let the zero solution of (E) be

UAS with corresponding aE(-), ßE(-), and t(-). Suppose there exist

otp(-), ßp(-), and y(-) in the class K such that for some r>0 and all

0<5^r, we have

(4.1) aE(5) < ap(8) < ô ^ ßE(d) < ßP(o),

(4.2) y(ßP(S)) < [2r(5)e2L^]-' min{,3p(5) - ßE(5), aP(5) - aE(5)}.

Then if \g(t, x)\ ^7(|x| ) for ¿ = 0 and |x| ^r, the zero solution of (P)

is UAS with corresponding otp(-), ßp(-), and t(-).

Remarks. Note that the right-hand side of (4.2) is positive because

of (4.1). Since ßp(-) is strictly increasing,7(-) is well-defined by (4.2).

Observe the structure of (4.2): the bound 7(-) for g depends on the

choices of ßP ( • ) and aP ( ■ ). To make 7 ( • ) larger, one must take aP ( • )

closer to the identity function and thus obtain a slower approach to

zero of the solutions of (P). Actually, since aE(-), ßE(-), and t(-) are

not uniquely determined, some manipulating of these might result in

better estimates for 7(-)- This can be complicated because, for ex-

ample, decreasing aE(-) would seem to force the increasing of r(-)

which might make the right-hand side of (4.2) even smaller. The

difficult but important problem of juggling all these scalar functions
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in order to obtain the best estimate of 7(-) from (4.2) has not been

solved as yet. In some cases, it seems helpful to choose aE(-) in such

a way that r(-) is constant (see the proof of Theorem 5.1). Example

8.2 of [2] shows that Theorem 4.1 need not hold if/ does not satisfy

(3.3).
Proof. Let |x0| <8^r and t0^0. Let x(-) and y(-) be solutions of

(E) and (P), respectively, through (t0, x0). For as long as | y(t) \ ußp(8)

on the interval t0^t^t0-\-T(8), we have

I y(t) I  Ú I x(0 I + I y(0 - x(t) I
=2 ßE(S) + 2y(ßP(S))r(o)e2L^ < ßP(8).

Thus |y(/)| <ßp(S) îor to^t^to+T(5). Also

I y(to + t(5)) I   =  I x(t0 + r(5)) I   + I y(t0 + r(8)) - *(/„ + r(i)) |

^ aE(8) + 2y(ßP(8))r(8)e2Lr^ < aP(8).

By Lemma 3.1, the zero solution is UAS for (P). This completes the

proof.

5. We now apply Theorem 4.1 to obtain

Theorem 5.1 Let f satisfy (3.3) and for all real c and some ¿ = 1 let

(5.1) f(t, ex) = ckf(t, x).

Let the zero solution of (E) be UAS. Then if g(t, x) =o(\ x\k), the zero

solution of (P) tí UAS.

Remark. Hahn [l, p. 282] proved this result by using Lyapunov

functions and under the additional assumption that/ has continuous

first partial derivatives with respect to x which are uniformly bounded

with respect to t. Note that if/ is linear inx, then/ satisfies (5.1) with

*-l.
Proof. First, assume k = l. Then [l, p. 280] there exist a = l and

b > 0 such that

I x(t; to, Xo)\   = a I x0|  exp[—b(t — t0)]

for all ¿_¿o^0. Thus we may choose ßE(5)=a8, aE(8)=^8, and

T(5)=r = è-1 log 2a. Let ßP(8) = (a + l)8 and aP(5)=35/4. Then the

right-hand side of (4.2) is a linear function of 8. Thus if g(t, x) =o(|x| ),

(4.2) will be satisfied for sufficiently small 8.

Now let k>l. Then [l, p. 279-80] there exist a>0 and o>0 such

that

I x(t; to, xo) I   ^ (a I xo I1-* + b(t - i»))1'«1-*'
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for ¿^¿o = 0 and there exist c>0 and T>0 such that

| x(Z; Z0, xo) |   è ( | xo I1"* + c(t - Zo))1'»-«

for Zo^O and ZiïZo+r. Thus we may choose ßs(o)=aio, aE(S)

= 8(l_5»-i)i/(*-i), and

t(Ô) = t = 2*-1(c(2i-1 - l))-1 + T,

where a^a1'"-*'. Then if |x0| ^5g¿, t^ (c(1 -Ô*-1))-1; hence

| x(t0 + t; Z0, x0) |   £j otB(S).

Let /3p(5) = (ai + l)S and aP(ô)^^(ô+aE(à)). Then the right-hand

side of (4.2) becomes q5 [l — (1 — g*-i)i/(*-n] for some constant q>0.

If this expression is divided by [/3p(S)]*, its limit as 5—»0 is, using

L'Hospital's rule, a positive constant. Thus (4.2) will be satisfied for

sufficiently small S provided that y(ßp(5))/[ßp(5)]k^O as 8->0, i.e.,

provided that g(t, x) =o(|x| *). This completes the proof.
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