IDENTIFYING PERTURBATIONS WHICH PRESERVE
ASYMPTOTIC STABILITY!
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1. If the zero solution is uniform-asymptotically stable for the
vector ordinary differential equation

(E) x = f(ty x),

then it is also uniform-asymptotically stable for the perturbed equa-
tion

(P) y’ = f(t, y) + g(t’ y)

if f satisfies a uniform Lipschitz condition and if g is “sufficiently
small.” Such sufficiently small g we will call permissible. This result
is known and the proof is essentially the same as the proof that a
Lipschitz, uniform-asymptotically stable system is totally stable [1,
p. 276]; namely, a positive definite, decrescent Lyapunov function V
exists for (E) satisfying Vg(¢, x) < —c(|x|) and Igrad Vi, x)| <b.
Therefore

Velt, 2) = Ve(t, 2) + (grad V(t, ), g(t, 2)) £ — (| 5 )

if I g(s, x)l = |x| )/2b. Thus an estimate on the size of permissible
perturbations g is provided in terms of a Lyapunov function associ-
ated with (E). If f has further special properties, so might V. In
this way Hahn [1, p. 282] proved the following:

Let f,(t, x) be continuous and bounded for t =0 and |xl =1. Suppose
that for all real c and some k=1, f(t, cx) =c*f(¢, x). Then g(t, x) = o(| xl k)
1s permissible.

The purpose of this paper is to establish estimates on the size of
permissible g in terms of the rate of approach to zero of the solutions
of (E). Using these estimates we can prove Hahn’s theorem without
assuming that f is differentiable.

2. Let R" denote Euclidean n-space. Let (x, y) denote the inner
product of x and y in R*, ie., {x, ¥)=x1y1+ - - - +%.¥.. Let |xl
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=(x, x)2. Consider (E) and (P) where f and g map [0, ©)XR"
continuously into R". Assume f(¢, 0) =g(¢, 0) =0. Thus for each £, =0
and each x(&ER", there is at least one solution x(¢; ¢, o) of (E) and
at least one solution y(¢; ¢, xo) of (P) through (¢, xo) which are de-
fined for ¢ in a neighborhood of .. (We do not assume that the solu-
tions of (E) or (P) are uniquely determined by (¢, x0).)

DEFINITION 2.1. The zero solution is uniform-asymptotically stable
(UAS) for (E) if (i) for every >0 there exists 6 =8(¢) >0 such that
|(t; to, %0) | <€ for all |xo| <& and £=2,=0, and if (ii) there exists
80> 0 and for every >0 there exists 7= T'(3) 20 such that Ix(t; to, %o) |
<7 for |xo| <8, t,=0, and t=t,+T.

If the solutions of (E) are not uniquely determined by (o, x),
then the zero solution is UAS provided that (i) and (ii) above hold
for all the solutions through (¢, x0).

Following Hahn [1, p. 7] we say that a real-valued function ¢(-)
belongs to class K if, for some r,>0, ¢(-) is continuous and strictly
increasing on [0, 1] and ¢(0) =0.

3. We begin with a lemma which characterizes uniform-asymptotic
stability in terms of certain auxiliary functions. These functions ap-
pear to be more useful for perturbation problems than those of
Hahn [1, p. 8]; however, Hahn's functions seem more useful for
converse theorems on Lyapunov functions [1, Chapter 6].

LeMMA 3.1. The zero solution of (E) zs UAS if and only if there exist
functions a(-) and B(-) in K and a positive function 7(-) such that

(3.1) a(d) <8 = BB)  for 0 <8 < 8o,
and for all |xo| <8< o, ts20, and ty<t<to+7(3),
(3.2) |2t x| SB6) and | x(to+ 7(8); to, %0) | = (o).

Proor. If the zero solution is UAS, then 8(-) exists by [1, p. 173].
Choose a(6) =18. Now we can take 7(8) =T(18) by Definition 2.1.

Conversely, suppose (3.1) and (3.2) hold. Let ¢>0. Let 6=26(e)
exist so that 0<6<d, and B5(d) <e. Let |x0| <6 and £ =0. Then

I x(to + 7(8) : t, x0) | =< af8) <.

Therefore (3.2) holds with ¢, replaced by ¢,+7(6) and x, replaced by
x(to+7(8); to, x0). Thus

| x(ty + 27(8) ; to, %0) I =< a(d) < §;
hence (3.2) holds with ¢, replaced by f,+27(8). By induction
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lx(t; to, xo)l =<B(d) <e for all t=ty. Thus (i) of Definition 2.1 holds.
Now choose 8, =a(6,-1) and t, =7(6p—1) +tn1foreachn=1,2, - . ..
Since {Sn} is a decreasing sequence of positive numbers, there exists
¥ =0 such that 8,—¢ as n— . But 6, —a(8,) >3 —a(@) and 6, —a(d,)
=0§,—08,11—0. Hence a(@)=9. By (3.1), #=0. Let 5>0. Choose
N=N(n) so large that dy <8(n), where 8(5) comes from (i) of Defini-
tion 2.1. Consider any solution %(- ; o, xo) through (¢, xo). Then

| (t1; to, 20) | = | &(to + 7(80); to, %0) | = a(b0) = b1.
Therefore, for some solution x(-; &1, Z(t1; fo, %0)),
| :f)(tz, to, xo) | = l x(tz; tl, :f?(tl, to, xo)) I _—<_ a(&l) = 52.

By repeating this argument, we have that

| &(tw; to, x0) | = | 2(tw; ty—1, F(tw—1; to, 0)) | = a(Bn-1) = dn.
Since dy <8(n), it follows that
| #(t; to, o) | = | 265 tw, &(tw; b, 20)) | <7

for all t=¢y =ty+ T'(n) for some solution x(-; ty, £(tx; to, %0)), where
T(n) = r[a®M@)] + r[a®2@0)] + - - - + 7[30].

Thus (ii) of Definition 2.1 holds. Hence the zero solution is UAS and
Lemma 3.1 is proved.

We now restrict f somewhat and prove a result concerning the dis-
tance of a solution of (P) from one of (E). A similar result appears
also in [2, Lemma 5.1].

LEMMA 3.2. Suppose that for some 7y in the class K, some L>0, some
r>0, and all |x| <7, | y| <7, and t =0, we have

(3.3) (® = 9,0, 2) = f(t,9)) S L]z~ y]?,
(3.4) |t o) | = (| =
Let u>0, t,=20, and let lx(t; to, x0)| <r and ’y(t; to, xo)l <r for
bhSt=<toytu. Then for all tr<t=to+u,
| x(t; to, ®o) — y(t; to, %0) | < 2vy(r)melv,

REMARK. If f satisfies a uniform Lipschitz condition, i.e., [f(¢, x)
—f(t, )] §L|x——y] for all £20, le <r, and |y| <r, then f satisfies
(3.3). Of course the converse is false, e.g. f(t, x) = —tx3. If f satisfies
(3.3), then solutions of (E) are uniquely determined by (¢, x,) for
t>ty, but not necessarily for ¢ <fy. Even in this case solutions of (P)
need not be uniquely determined for ¢>¢,.
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ProoF. Let x(t) =x(¢; to, %0) and y(¢) =y(¢; to, o). Define A=sup
Ix(t)—y(t)l for ty=<t=ty+u. Then :

(@& — ¥'(0), x(t) — y(1)) = (x(t) — y(0), £, =(1)) — f(t, y(1)))
— (x(®) — (1), g, y));

hence
%0 = 501 5 Doy + [ 22|59 = 505 s

By Gronwall’s inequality
[ x() — y() I2 < 2\y(r)ue?lv

for all £g<t=<to+u. Therefore N2 < 2Ny(r)ue?l* from which the result
follows.

4. Our main result says that if f satisfies (3.3) and if the zero
solution is UAS for (E) with corresponding ag(-), B&(-), and 7(-),
then by choosing appropriate larger ap(-) and Bp(-), there will be
room enough to perturb (E) by certain functions g and still have
that the zero solution is UAS, but with corresponding ap(-), B2(+)
and the same 7(-).

THEOREM 4.1. Let f satisfy (3.3). Let the zero solution of (E) be
UAS with corresponding ax(-), Be(-), and 7(-). Suppose there exist
ap(+), Be(+), and ¥(-) in the class K such that for some r>0 and all
0< 8 <7, we have

(4.1) ag(®) < ap(8) <6 = Br(8) < Br(5),
@2) vBr®) < [2r(3)e2E® ]! min{Bp(3) — B&(), ap(d) — az(d)}.

Then if Ig(t, x)| é'y(lx])for t=0 and |x| <r, the zero solution of (P)
is UAS with corresponding ap(-), Be(-), and 7(-).

REMARKS. Note that the right-hand side of (4.2) is positive because
of (4.1). Since Bp(-) is strictly increasing, v(-) is well-defined by (4.2).
Observe the structure of (4.2): the bound v(-) for g depends on the
choices of 8p(-) and ap(-). To make y(-) larger, one must take ap(-)
closer to the identity function and thus obtain a slower approach to
zero of the solutions of (P). Actually, since ag(-), Be(:), and 7(-) are
not uniquely determined, some manipulating of these might result in
better estimates for y(-). This can be complicated because, for ex-
ample, decreasing ag(-) would seem to force the increasing of 7(-)
which might make the right-hand side of (4.2) even smaller. The
difficult but important problem of juggling all these scalar functions
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in order to obtain the best estimate of y(-) from (4.2) has not been
solved as yet. In some cases, it seems helpful to choose ag(-) in such
a way that 7(-) is constant (see the proof of Theorem 5.1). Example
8.2 of [2] shows that Theorem 4.1 need not hold if f does not satisfy
(3.3).

ProoOF. Let |xo| <b8=rand{=0. Let x(-) and y(-) be solutions of
(E) and (P), respectively, through (¢, x0). For as long as [y(t)l <Br(d)
on the interval ¢, <t =<to+7(8), we have

v | = [2@] + | y@) — 20|
= Be() + 2v(82(8))7()e*L*® < Bp(5).
Thus |y(t)| <Br(8) for to<t=<te+7(5). Also
|yt +7@) | = |t + 7)) | + |9t + 7(3)) — 2(to + 7(3)) |
= ag(8) + 2v(Br(8))7(8)e* ™ ® < ap(5).

By Lemma 3.1, the zero solution is UAS for (P). This completes the
proof.

5. We now apply Theorem 4.1 to obtain
THEOREM 5.1 Let f satisfy (3.3) and for all real ¢ and some k=1 let
(5.1) @, ex) = (1, x).

Let the zero solution of (E) be UAS. Then if g(t, x) =o(| xl k), the zero
solution of (P) is UAS.

REMARK. Hahn [1, p. 282] proved this result by using Lyapunov
functions and under the additional assumption that f has continuous
first partial derivatives with respect to x which are uniformly bounded
with respect to ¢. Note that if f is linear in %, then f satisfies (5.1) with
k=1.

ProoF. First, assume k£=1. Then [1, p. 280] there exist a=1 and
>0 such that

l x(t, to, xo)[ é dI xol exp[—-b(t - to)]

for all £=¢,=0. Thus we may choose Bz(8) =ab, ar(8) =18, and
7(0)=7=0b"" log 2a. Let Bp(8) =(¢+1)d and ap(8) =35/4. Then the
right-hand side of (4.2) is a linear function of 8. Thus if g(¢, x) =o(| x| ),
(4.2) will be satisfied for sufficiently small 8.

Now let £#>1. Then [1, p. 279-80] there exist a>0 and 5> 0 such
that

| x(t; to, %o) | =< (aI xo|1"‘ + b(t — 1))/ a—H
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for t=%,=0 and there exist c¢>0 and T>0 such that
| 2(t; to, m0) | = (] 20 |"* + ¢(t — to))110—»

for =0 and ¢t=t+7. Thus we may choose Bz(8) =a16, ag(d)
=§(1 —8—1)U*=D and

7(0) =7 = 21(c(2"1 — 1)1+ T,
where a; =aV~®, Then if lxo| <6<, 72(c(1—081))"1; hence
I x(to + TS to, xo) I é aE(ﬁ).

Let B8p(8) =(a1+1)8 and ap(8) =3(6+ar(8)). Then the right-hand
side of (4.2) becomes ¢d [1 — (1 —8*1)1/&=D] for some constant ¢> 0.
If this expression is divided by [8#(d) ], its limit as §—0 is, using
L'Hospital’s rule, a positive constant. Thus (4.2) will be satisfied for
sufficiently small 8 provided that v(82(8))/[82(8) J¥—0 as §—0, i.e.,
provided that g(¢, x) =o(| x] k). This completes the proof.
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