IDENTIFYING PERTURBATIONS WHICH PRESERVE ASYMPTOTIC STABILITY¹

AARON STRAUSS² AND JAMES A. YORKE³

1. If the zero solution is uniform-asymptotically stable for the vector ordinary differential equation

(E)
$$x' = f(t, x),$$

then it is also uniform-asymptotically stable for the perturbed equation

$$(P) y' = f(t, y) + g(t, y)$$

if f satisfies a uniform Lipschitz condition and if g is "sufficiently small." Such sufficiently small g we will call *permissible*. This result is known and the proof is essentially the same as the proof that a Lipschitz, uniform-asymptotically stable system is totally stable [1, p. 276]; namely, a positive definite, decrescent Lyapunov function V exists for (E) satisfying $\dot{V}_B(t, x) \leq -c(|x|)$ and $|\operatorname{grad} V(t, x)| \leq b$. Therefore

$$V_P(t, x) = \dot{V}_E(t, x) + \langle \operatorname{grad} V(t, x), g(t, x) \rangle \leq -\frac{1}{2}c(|x|)$$

if $|g(t, x)| \le c(|x|)/2b$. Thus an estimate on the size of permissible perturbations g is provided in terms of a Lyapunov function associated with (E). If f has further special properties, so might V. In this way Hahn [1, p. 282] proved the following:

Let $f_x(t, x)$ be continuous and bounded for $t \ge 0$ and $|x| \le 1$. Suppose that for all real c and some $k \ge 1$, $f(t, cx) = c^k f(t, x)$. Then $g(t, x) = o(|x|^k)$ is permissible.

The purpose of this paper is to establish estimates on the size of permissible g in terms of the rate of approach to zero of the solutions of (E). Using these estimates we can prove Hahn's theorem without assuming that f is differentiable.

2. Let R^n denote Euclidean *n*-space. Let $\langle x, y \rangle$ denote the inner product of x and y in R^n , i.e., $\langle x, y \rangle = x_1 y_1 + \cdots + x_n y_n$. Let |x|

Presented to the Society, January 24, 1969; received by the editors November 13, 1968.

¹ Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No. DA-31-124-ARO-D-462.

² Work supported in part by an NSF Postdoctoral Fellowship and NSF grant GP-6167 at the Department of Mathematics, University of Maryland.

^{*} Work supported in part by NSF grant GP-7846 at the Institute for Fluid Dynamics and Applied Mathematics, University of Maryland.

 $=\langle x, x \rangle^{1/2}$. Consider (E) and (P) where f and g map $[0, \infty) \times R^n$ continuously into R^n . Assume f(t, 0) = g(t, 0) = 0. Thus for each $t_0 \ge 0$ and each $x_0 \in R^n$, there is at least one solution $x(t; t_0, x_0)$ of (E) and at least one solution $y(t; t_0, x_0)$ of (P) through (t_0, x_0) which are defined for t in a neighborhood of t_0 . (We do not assume that the solutions of (E) or (P) are uniquely determined by (t_0, x_0) .)

DEFINITION 2.1. The zero solution is uniform-asymptotically stable (UAS) for (E) if (i) for every $\epsilon > 0$ there exists $\delta = \delta(\epsilon) > 0$ such that $|x(t; t_0, x_0)| < \epsilon$ for all $|x_0| < \delta$ and $t \ge t_0 \ge 0$, and if (ii) there exists $\delta_0 > 0$ and for every $\eta > 0$ there exists $T = T(\eta) \ge 0$ such that $|x(t; t_0, x_0)| < \eta$ for $|x_0| < \delta_0$, $t_0 \ge 0$, and $t \ge t_0 + T$.

If the solutions of (E) are not uniquely determined by (t_0, x_0) , then the zero solution is UAS provided that (i) and (ii) above hold for all the solutions through (t_0, x_0) .

Following Hahn [1, p. 7] we say that a real-valued function $\phi(\cdot)$ belongs to class K if, for some $r_1 > 0$, $\phi(\cdot)$ is continuous and strictly increasing on $[0, r_1]$ and $\phi(0) = 0$.

3. We begin with a lemma which characterizes uniform-asymptotic stability in terms of certain auxiliary functions. These functions appear to be more useful for perturbation problems than those of Hahn [1, p. 8]; however, Hahn's functions seem more useful for converse theorems on Lyapunov functions [1, Chapter 6].

LEMMA 3.1. The zero solution of (E) is UAS if and only if there exist functions $\alpha(\cdot)$ and $\beta(\cdot)$ in K and a positive function $\tau(\cdot)$ such that

(3.1)
$$\alpha(\delta) < \delta \leq \beta(\delta) \quad \text{for } 0 < \delta < \delta_0,$$

and for all $|x_0| \leq \delta < \delta_0$, $t_0 \geq 0$, and $t_0 \leq t \leq t_0 + \tau(\delta)$,

$$(3.2) \quad |x(t;t_0,x_0)| \leq \beta(\delta) \quad and \quad |x(t_0+\tau(\delta);t_0,x_0)| \leq \alpha(\delta).$$

PROOF. If the zero solution is UAS, then $\beta(\cdot)$ exists by [1, p. 173]. Choose $\alpha(\delta) = \frac{1}{2}\delta$. Now we can take $\tau(\delta) = T(\frac{1}{2}\delta)$ by Definition 2.1.

Conversely, suppose (3.1) and (3.2) hold. Let $\epsilon > 0$. Let $\delta = \delta(\epsilon)$ exist so that $0 < \delta < \delta_0$ and $\beta(\delta) < \epsilon$. Let $|x_0| \le \delta$ and $t_0 \ge 0$. Then

$$|x(t_0 + \tau(\delta): t_0, x_0)| \leq \alpha(\delta) < \delta.$$

Therefore (3.2) holds with t_0 replaced by $t_0 + \tau(\delta)$ and x_0 replaced by $x(t_0 + \tau(\delta); t_0, x_0)$. Thus

$$|x(t_0+2\tau(\delta);t_0,x_0)| \leq \alpha(\delta) < \delta;$$

hence (3.2) holds with t_0 replaced by $t_0+2\tau(\delta)$. By induction

 $|x(t; t_0, x_0)| \leq \beta(\delta) < \epsilon$ for all $t \geq t_0$. Thus (i) of Definition 2.1 holds. Now choose $\delta_n = \alpha(\delta_{n-1})$ and $t_n = \tau(\delta_{n-1}) + t_{n-1}$ for each $n = 1, 2, \cdots$. Since $\{\delta_n\}$ is a decreasing sequence of positive numbers, there exists $\vartheta \geq 0$ such that $\delta_n \rightarrow \vartheta$ as $n \rightarrow \infty$. But $\delta_n - \alpha(\delta_n) \rightarrow \vartheta - \alpha(\vartheta)$ and $\delta_n - \alpha(\delta_n) = \delta_n - \delta_{n+1} \rightarrow 0$. Hence $\alpha(\vartheta) = \vartheta$. By (3.1), $\vartheta = 0$. Let $\eta > 0$. Choose $N = N(\eta)$ so large that $\delta_N < \delta(\eta)$, where $\delta(\eta)$ comes from (i) of Definition 2.1. Consider any solution $\bar{x}(\cdot; t_0, x_0)$ through (t_0, x_0) . Then

$$|\bar{x}(t_1; t_0, x_0)| = |\bar{x}(t_0 + \tau(\delta_0); t_0, x_0)| \leq \alpha(\delta_0) = \delta_1.$$

Therefore, for some solution $x(\cdot; t_1, \bar{x}(t_1; t_0, x_0))$,

$$|\bar{x}(t_2; t_0, x_0)| = |x(t_2; t_1, \bar{x}(t_1; t_0, x_0))| \leq \alpha(\delta_1) = \delta_2.$$

By repeating this argument, we have that

$$|\bar{x}(t_N; t_0, x_0)| = |x(t_N; t_{N-1}, \bar{x}(t_{N-1}; t_0, x_0))| \leq \alpha(\delta_{N-1}) = \delta_N.$$

Since $\delta_N < \delta(\eta)$, it follows that

$$|\bar{x}(t;t_0,x_0)| = |x(t;t_N,\bar{x}(t_N;t_0,x_0))| < \eta$$

for all $t \ge t_N = t_0 + T(\eta)$ for some solution $x(\cdot; t_N, \bar{x}(t_N; t_0, x_0))$, where

$$T(\eta) = \tau \left[\alpha^{(N-1)}(\delta_0)\right] + \tau \left[\alpha^{(N-2)}(\delta_0)\right] + \cdots + \tau \left[\delta_0\right].$$

Thus (ii) of Definition 2.1 holds. Hence the zero solution is UAS and Lemma 3.1 is proved.

We now restrict f somewhat and prove a result concerning the distance of a solution of (P) from one of (E). A similar result appears also in [2, Lemma 5.1].

LEMMA 3.2. Suppose that for some γ in the class K, some L>0, some r>0, and all $|x| \le r$, $|y| \le r$, and $t \ge 0$, we have

$$(3.3) \qquad \langle x - y, f(t, x) - f(t, y) \rangle \le L |x - y|^2,$$

$$(3.4) | g(t, x) | \leq \gamma(|x|).$$

Let u>0, $t_0\ge 0$, and let $|x(t; t_0, x_0)|\le r$ and $|y(t; t_0, x_0)|\le r$ for $t_0\le t\le t_0+u$. Then for all $t_0\le t\le t_0+u$,

$$|x(t; t_0, x_0) - y(t; t_0, x_0)| \leq 2\gamma(r)ue^{2Lu}.$$

REMARK. If f satisfies a uniform Lipschitz condition, i.e., $|f(t, x) - f(t, y)| \le L|x-y|$ for all $t \ge 0$, $|x| \le r$, and $|y| \le r$, then f satisfies (3.3). Of course the converse is false, e.g. $f(t, x) = -tx^3$. If f satisfies (3.3), then solutions of (E) are uniquely determined by (t_0, x_0) for $t > t_0$ but not necessarily for $t < t_0$. Even in this case solutions of (P) need not be uniquely determined for $t > t_0$.

PROOF. Let $x(t) = x(t; t_0, x_0)$ and $y(t) = y(t; t_0, x_0)$. Define $\lambda = \sup |x(t) - y(t)|$ for $t_0 \le t \le t_0 + u$. Then

$$\langle x'(t) - y'(t), x(t) - y(t) \rangle = \langle x(t) - y(t), f(t, x(t)) - f(t, y(t)) \rangle$$
$$- \langle x(t) - y(t), g(t, y(t)) \rangle;$$

hence

$$|x(t) - y(t)|^2 \leq 2\lambda \gamma(r)u + \int_{t_0}^t 2L |x(s) - y(s)|^2 ds.$$

By Gronwall's inequality

$$|x(t) - y(t)|^2 \le 2\lambda \gamma(r) u e^{2Lu}$$

for all $t_0 \le t \le t_0 + u$. Therefore $\lambda^2 \le 2\lambda \gamma(r) u e^{2Lu}$ from which the result follows.

4. Our main result says that if f satisfies (3.3) and if the zero solution is UAS for (E) with corresponding $\alpha_E(\cdot)$, $\beta_E(\cdot)$, and $\tau(\cdot)$, then by choosing appropriate larger $\alpha_P(\cdot)$ and $\beta_P(\cdot)$, there will be room enough to perturb (E) by certain functions g and still have that the zero solution is UAS, but with corresponding $\alpha_P(\cdot)$, $\beta_P(\cdot)$ and the same $\tau(\cdot)$.

THEOREM 4.1. Let f satisfy (3.3). Let the zero solution of (E) be UAS with corresponding $\alpha_E(\cdot)$, $\beta_E(\cdot)$, and $\tau(\cdot)$. Suppose there exist $\alpha_P(\cdot)$, $\beta_P(\cdot)$, and $\gamma(\cdot)$ in the class K such that for some r>0 and all $0<\delta \leq r$, we have

$$(4.1) \alpha_E(\delta) < \alpha_P(\delta) < \delta \leq \beta_E(\delta) < \beta_P(\delta),$$

$$(4.2) \quad \gamma(\beta_P(\delta)) < \left[2\tau(\delta)e^{2L\tau(\delta)}\right]^{-1} \min\left\{\beta_P(\delta) - \beta_E(\delta), \alpha_P(\delta) - \alpha_E(\delta)\right\}.$$

Then if $|g(t, x)| \le \gamma(|x|)$ for $t \ge 0$ and $|x| \le r$, the zero solution of (P) is UAS with corresponding $\alpha_P(\cdot)$, $\beta_P(\cdot)$, and $\tau(\cdot)$.

REMARKS. Note that the right-hand side of (4.2) is positive because of (4.1). Since $\beta_P(\cdot)$ is strictly increasing, $\gamma(\cdot)$ is well-defined by (4.2). Observe the structure of (4.2): the bound $\gamma(\cdot)$ for g depends on the choices of $\beta_P(\cdot)$ and $\alpha_P(\cdot)$. To make $\gamma(\cdot)$ larger, one must take $\alpha_P(\cdot)$ closer to the identity function and thus obtain a slower approach to zero of the solutions of (P). Actually, since $\alpha_E(\cdot)$, $\beta_E(\cdot)$, and $\tau(\cdot)$ are not uniquely determined, some manipulating of these might result in better estimates for $\gamma(\cdot)$. This can be complicated because, for example, decreasing $\alpha_E(\cdot)$ would seem to force the increasing of $\tau(\cdot)$ which might make the right-hand side of (4.2) even smaller. The difficult but important problem of juggling all these scalar functions

in order to obtain the best estimate of $\gamma(\cdot)$ from (4.2) has not been solved as yet. In some cases, it seems helpful to choose $\alpha_B(\cdot)$ in such a way that $\tau(\cdot)$ is constant (see the proof of Theorem 5.1). Example 8.2 of [2] shows that Theorem 4.1 need not hold if f does not satisfy (3.3).

PROOF. Let $|x_0| < \delta \le r$ and $t_0 \ge 0$. Let $x(\cdot)$ and $y(\cdot)$ be solutions of (E) and (P), respectively, through (t_0, x_0) . For as long as $|y(t)| \le \beta_P(\delta)$ on the interval $t_0 \le t \le t_0 + \tau(\delta)$, we have

$$|y(t)| \leq |x(t)| + |y(t) - x(t)|$$

$$\leq \beta_E(\delta) + 2\gamma(\beta_P(\delta))\tau(\delta)e^{2L\tau(\delta)} < \beta_P(\delta).$$

Thus $|y(t)| < \beta_P(\delta)$ for $t_0 \le t \le t_0 + \tau(\delta)$. Also

$$|y(t_0 + \tau(\delta))| \leq |x(t_0 + \tau(\delta))| + |y(t_0 + \tau(\delta)) - x(t_0 + \tau(\delta))|$$

$$\leq \alpha_E(\delta) + 2\gamma(\beta_P(\delta))\tau(\delta)e^{2L\tau(\delta)} < \alpha_P(\delta).$$

By Lemma 3.1, the zero solution is UAS for (P). This completes the proof.

5. We now apply Theorem 4.1 to obtain

THEOREM 5.1 Let f satisfy (3.3) and for all real c and some $k \ge 1$ let (5.1) $f(t, cx) = c^k f(t, x).$

Let the zero solution of (E) be UAS. Then if $g(t, x) = o(|x|^k)$, the zero solution of (P) is UAS.

REMARK. Hahn [1, p. 282] proved this result by using Lyapunov functions and under the additional assumption that f has continuous first partial derivatives with respect to x which are uniformly bounded with respect to t. Note that if f is linear in x, then f satisfies (5.1) with k=1.

PROOF. First, assume k=1. Then [1, p. 280] there exist $a \ge 1$ and b>0 such that

$$|x(t; t_0, x_0)| \le a |x_0| \exp[-b(t - t_0)]$$

for all $t \ge t_0 \ge 0$. Thus we may choose $\beta_E(\delta) = a\delta$, $\alpha_E(\delta) = \frac{1}{2}\delta$, and $\tau(\delta) = \tau = b^{-1} \log 2a$. Let $\beta_P(\delta) = (a+1)\delta$ and $\alpha_P(\delta) = 3\delta/4$. Then the right-hand side of (4.2) is a linear function of δ . Thus if g(t, x) = o(|x|), (4.2) will be satisfied for sufficiently small δ .

Now let k>1. Then [1, p. 279-80] there exist a>0 and b>0 such that

$$|x(t; t_0, x_0)| \le (a |x_0|^{1-k} + b(t-t_0))^{1/(1-k)}$$

for $t \ge t_0 \ge 0$ and there exist c > 0 and T > 0 such that

$$|x(t; t_0, x_0)| \le (|x_0|^{1-k} + c(t - t_0))^{1/(1-k)}$$

for $t_0 \ge 0$ and $t \ge t_0 + T$. Thus we may choose $\beta_E(\delta) = a_1 \delta$, $\alpha_E(\delta) = \delta (1 - \delta^{k-1})^{1/(k-1)}$, and

$$\tau(\delta) \equiv \tau = 2^{k-1}(c(2^{k-1}-1))^{-1} + T,$$

where $a_1 = a^{1/(1-k)}$. Then if $|x_0| \le \delta \le \frac{1}{2}$, $\tau \ge (c(1-\delta^{k-1}))^{-1}$; hence

$$|x(t_0+\tau;t_0,x_0)| \leq \alpha_E(\delta).$$

Let $\beta_P(\delta) = (a_1+1)\delta$ and $\alpha_P(\delta) = \frac{1}{2}(\delta + \alpha_E(\delta))$. Then the right-hand side of (4.2) becomes $q\delta \left[1-(1-\delta^{k-1})^{1/(k-1)}\right]$ for some constant q>0. If this expression is divided by $\left[\beta_P(\delta)\right]^k$, its limit as $\delta \to 0$ is, using L'Hospital's rule, a positive constant. Thus (4.2) will be satisfied for sufficiently small δ provided that $\gamma(\beta_P(\delta))/[\beta_P(\delta)]^k \to 0$ as $\delta \to 0$, i.e., provided that $g(t, x) = o(|x|^k)$. This completes the proof.

REFERENCES

- 1. W. Hahn, Stability of motion, Springer-Verlag, New York, 1967.
- 2. A. Strauss and J. A. Yorke, Perturbing uniform asymptotically stable nonlinear systems, J. Differential Equations (to appear).

University of Wisconsin, Madison and University of Maryland