
CHARACTERISTIC MULTIPLIERS FOR SOME
PERIODIC DIFFERENTIAL EQUATIONS

T. G. PROCTOR1

1. Introduction. Let P(t) be a 2 X2 matrix with elements which are

continuous real valued functions of period T and consider the dif-

ferential equation

(1) x = P(t)x,

where x is a vector with two components. It is well known [7] that

there are numbers Xi and X2, called characteristic multipliers, and

corresponding solutions Xi(t), x2(t) oí (1), called normal solutions,

which satisfy for i = 1, 2,

Xi(t + T) = \iXi(t),        — oo < / < oo,       Aia2 = exp J    traceP(t)dt.
J o

If Xi?£X2, and in some cases when Xi=X2, any such normal solutions

xi(t), x2(t) are independent. In this case a knowledge of the character-

istic multipliers and the values of xi(t), x2(t) for 0 = Z5¡ T gives infor-

mation for every solution of (1) for all t. It is clear that corresponding

statements can be made for the second order equation

d2y/dt2 + p(l)(dy/dt) + q(t)y = 0,

with continuous periodic coefficient functions p(t), q(t) since this

results from the case

y

dy/dt
P(t) =

0 1

-q(l)     -p(t)

Calculation of the characteristic multipliers is not routine since

in general one does not know even one nontrivial solution of (1).

However it is possible to obtain convergent series representations

for the solutions and thus calculate approximate values for the

multipliers [2], [8].

An alternative procedure for obtaining the characteristic multi-

pliers and the corresponding normal solutions for (1) is possible when-
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ever an associated Riccati differential equation has a periodic solu-

tion. If we make the change of coordinates x1=z1+y(Z)z2, x2 = z2 in

(1) where y(t) is a solution of the Riccati equation

dy/dt = a(t) + b(t)y + c(t)y2,

(2)
a(t) = pi2(t),       b(t) = pn(t) - p22(t),       c(t) = - p21(t),

the differential equation in z can be integrated. This gives

Theorem 1. (a) If x(t)=column (x!(Z), x2(Z)) is a solution of (1)

then y(t) =x1(t)/x2(t) is a solution of (2) on any interval on which x2(t)

does not vanish.

(b) If y(t) is a solution of (2) on an interval I containing the number

k then

x\t) = y(t) exp \    [p2i(s)y(s) + p22(s)]ds,

(3)

x2(t) = exp f   \p2i(s)y(s) + p22(s)]ds
<J k

is a solution of (1) on I.

(c) // y(t) is a solution of (2) with period nT and f is the mean value

°f p2i(t)y(t)-\-pn(t) over the period nT, where n is a positive integer,

then enT/ is a characteristic multiplier for (1) for the period nT and (3)

is a normal solution of (1) corresponding to this multiplier.

In §§2 and 3 of this paper we will prove two theorems with rather

restrictive hypotheses which give the existence of a periodic solution

of (2). The theorem in §2 can be viewed as a special case of the

theorem in §3. We also mention other known techniques for construct-

ing periodic solutions to the Riccati differential equation.

Similar analysis for the differential equation (1) where P(t) is

«X« and x is an « vector leads to the study of a matrix Riccati dif-

ferential equation and the analysis is more difficult. The technique

of using a Riccati differential equation has been used by Gel'man

[3] and Adrianova [l] for the case of quasi-periodic coefficients pa(t).

2. b(t) has nonzero mean value. Let H be the set of all continuous

real valued functions with period T, let bEH, let B(t) =f'0b(s)ds and

in this section we will assume B(T)¿¿0. Also suppose u, IEH and

satisfy l(t) ^u(t) for all Z and let K be the subset of H consisting of

functions/ where l(t)^f(t)^u(t). Further assume q(t, z) is a con-

tinuous real valued function defined for l(t)^z^u(t) such that for

any fixed z, qEH and define 3: K—>H by
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/• l+T ç t

zhV) =  _B(r) _    j       9(i, Ä(j))expJ   b(v)dvds.

Theorem 2. 7/ (1) 3w(í) £«(/), ¿(*)á3/(f) /<w «« < aw¿ (2) e-B<r)-l

>0 awá z^w implies q(t, z)^q(t, w) or (3) e~Bm —1<0 a«d zgtn

implies q(t, z) ^q(t, w), then the sequences {3mu(t) }™,1 and {?>ml{t)}™=1

converge uniformly to periodic solutions of

(4) ¿yd* = ô(/)z + q(t, z).

Proof. The hypotheses (1) and (2) or (1) and (3) imply that if h,

kEK and h(t)^k(t) for all t then Zh(t)^k{t) for all t. Thus the
sequences {3m/(/)} ™,0 and {3mw(/) }m«o are nondecreasing and non-

increasing respectively, uniformly bounded and equicontinuous.

Remarks. If z(t) is a periodic solution of (4) where q(t, z)=c(t)

(w(t)+z)2,

1 p t+T /» I

WW = T7^¡-7 I       aW exP I    °{v)dvds

we have that y(t)=w(t)-\-z(t) is a periodic solution of (2). If y(t) is

a periodic solution of (4) where q(t, y)=a(t)-\-c(t)y2 then y(t) is a

periodic solution of (2).

Example. If we regard the right member of y = (y — l)X(y — 2) as

having period 2ir the corresponding transformation 3 is given by

3A(/) =- I        e3s[Ä2(5) + 2]ái.
e6T — ÍJ t

We note u(t) = 5/4, /(/) =0 satisfy the conditions of the theorem and

3ml(t), Zmu{t) converge to 1 as m—><*>.

Several theorems on periodic solutions of (2) are given in Hale

[6, pp. 28-31] which result from the contraction mapping theorem

and successive approximations. Using Theorem 5.1 [ó] a periodic

solution exists if (1) \c(t)\ is small enough (q(t, z) =c(t)(w(t)-\-z)2,

y = w(t)+z(t)) or (2) if \a(t)\ is small enough (q(t, y)=a(t)-\-c{t)y2).

We state without proof an obvious modification (for the scalar case)

of [6, Theorem 5.2] because of its relation to (1). Let h EH and have

mean value zero. Let r and a be positive numbers and let q(t, y, p.)

be a continuous real valued function for ail í, —rfíy^r and \p\ g<r.

Further let q be periodic for fixed (y, p.) and satisfy for \y\, \z\ ^p,

\p\ Úo- \q(t, y, p)-q(t, z, p)\ g,f¡Qi, p)\y-z\, q(t, 0, 0)=0, where
7](p, p) is continuous and nondecreasing in p and in p for \p\ <o",

0gp=r.
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Theorem 3. There is a 5, 0<S<o-, so that for \p\ <5

dy/dt = ß[b(t)y + q(t, y, M) + h(t)]

has a periodic solution which is the limit of successive approximations.

Corollary. Let p(t, p.), c(t, ¡x) be continuous real valued functions

defined on i?X[0, cr] which satisfy p(t, 0)=c(t, 0)=0, p, cEH for

fixed p., let q, r, hEH, h with zero mean value, r with nonzero mean

value and let

P(() „,(,,„>_„( -v>    >«.»> +*<oy
\-c(t,»)    q(l)-,(i)     I

Then for p sufficiently small there is a periodic solution y(t) of (2) and

eTS is a characteristic multiplier for (1) where f is the mean value of

Pu(t)y(t)+p22(t).

By replacing Z by t/p we see that an alternative statement for this

corollary is that there is a number X and a solution of

/    q(t/ß) p(t/ß, ¿) + h(t/ß)\
•v = I \ ce

\-c(t/n,ß)    q(t/ß)-r(t/y.)     )

satisfying x(t-\-pT) —\x(t) when p is small enough.

Wasow [9] and Golomb [4] have developed a recursive scheme for

constructing periodic solutions for the quasilinear differential equa-

tion y = b(t)y-\-q(t, y, p) when b(t) has nonzero mean value and p is

small. The resulting theorems provide another technique for obtain-

ing periodic solutions of (2) and thus obtaining characteristic multi-

pliers for (1). Golomb [5] also shows that in certain cases this re-

cursive scheme leads directly to a calculation of the characteristic

multipliers and corresponding normal solutions.

3. General case. Let H' be any closed subspace of H in the uni-

form topology and for any /EH define Mf=(l/T)f0Tf(t)dt. Let Z, u

be in H' with l(t) ^u(t) for all Z and let K be all functions in H' lying

between Z and u. Further suppose q(t, y, p) is defined and continuous

for l(t)^y^u(t) \p\ ^<r for some <r>0 and has period T for fixed

(y, p). For any number a satisfying Z(0) ua^u(0) and |m| =S<r define

3a,«: K^H by

W(0 = 0+ f  [q(s,f(s),p) - M{q(t,f(t),ß))\ds.
J 0

Theorem 4. For fixed (a, p) if 3a(K)EH', 30,mm(Z) ^u(t), l(t)

^7>aJ(t) for all t and if y, zEK, y(t) ^z(t) implies 3a,My(Z) ^3a,ßz(t) for
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all t then the sequences {z™J(t) }Z=o> {^«(O }m=o converge uniformly

to functions l*(t, a, p), p*(t, a, p) satisfying

dy 1 1

— (t,a,p) = q(t,y(l,a,p),p) - M{q(l,y(t, a, p), p)\.
at

The proof is identical to that of Theorem 2.

Corollary. // l*(t, a, p) exists and M {q(t, l*{t, a, p), p)} =0 then

I* is a periodic solution of

dy/dt = q(t,y,p).

An analogous statement holds for u*(t, a, p).

As an example of this theorem and corollary consider q(t, y, p)=y

sin I, a = l, and H' the set of all even functions in H, l(t) = l and

u(t) =exp(l— cos t).

Hale [6, pp. 38-44] gives several theorems for periodic solutions

of dy/dt = b(t)y-\-q(t, y, p) in the case where b{t) has zero mean value

and q is small for small p. These theorems again use successive ap-

proximation and the contraction mapping theorem. In the applica-

tion of these theorems to the differential equations the symmetry

properties of q(t, y, p) play an important role in the analysis to deter-

mine if the bifurcation equations Mqit, y{t)) =0 have a solution. One

of the simplest cases arises when b(t)=0 and q(t, y, p) is odd in t.

In this particular case the recursive method developed by Wasow

and Golomb also gives a convergent series expansion for the solution

for small p.

4. Final remarks. Note that if T is the least period of P(t) in

(1) then the coefficient functions a, b, c in (2) have least period 0 or

T/n for some positive integer n. By applying the construction pro-

cedures used in Theorems 2, 3, or 4, we construct solutions of (2) with

period T/n or 0. Then by replacing nT by T in Theorem 1, we ob-

tain a characteristic multiplier for the period T.

For a given matrix Q(t) we notice that all matrices P(t) — Q(t) +K(t)

have the same associated Ricatti differential equation (2) if K(t) has

the form

If for some such K{t) equation (1) can be solved, Theorem 1 may be

used to solve equation (2). This in turn furnishes a method to solve

x = Q(t)x. This remark applies even if none of the functions in Q(t)
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and K(t) are periodic. However in the case of periodic P(t) suppose

x = P(t)x has a normal solution, column (x^Z), x2(Z)) where x2(Z) does

not vanish. If X is the corresponding characteristic multiplier, y(t)

= x1(Z)/x2(Z) and g = Mp(t), then Xer" is a characteristic multiplier for

x = Q(t)x and a corresponding normal solution is given by (3) where

p22 is replaced by p22—p.

Since the proof of Theorem la and b does not require the periodicity

of P(t), theorems which imply the existence of bounded or almost

periodic solutions of (2) or the asymptotic form of certain solutions

of (2) also give information concerning the solutions of (1).
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