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Let x(Z) be a nonconstant periodic solution with period p of

(1) x' = F(x)        (' = d/dt)

where F:Q^>Rn for some set QQRn. Let ||-|| denote the Euclidean

norm. We say F has (Euclidean) Lipschitz constant L if

(2) ||F(xi) - F(x2)|| ^ LJIx! - x2\\        for each x1; x2 E 0.

There is a simple relationship between L and p.

Theorem. // F satisfies (2), then p^2ir/L.

The fact that p is bounded below by c/L for some c is surprising.

This was first proved by Y. Sibuya (unpublished), who showed

PZ2/L.
This estimate 2tt/I, cannot be improved: If »^2 and

x = (Xi, x2> • • • , xnJ E Rn>

let Xi = —Lx2, xí =Lxi, x[ =0 for 2 <¿;Sw, then (2) is satisfied letting

F(x) = (— Lx2, Lx\, 0, • • • , 0), and all nonconstant solutions are

periodic with period 2w/L.

To prove the theorem, we define the functions f(t) = F(x(t)) and

#(0=| If (Oil and y(t)=f(t)/N(t), for tER- The function y(t) is
a unit vector tangent to the periodic trajectory. The proof involves

relating two facts about (d/dt)y(t). Since (2) is satisfied, solutions of

(1) are unique, so N(t) 9e 0 for any Z. (If N(t) =0 for some Z, we would

have N(t)^0.) Since x is a C1 function, x is Lipschitzean. Also,/ is

a Lipschitz function of Z (with constant L sup^o,,,] |x'(Z)| ). It is not

hard to verify that N and y are also Lipschitzean, so in particular

/, N and y are absolutely continuous, and therefore they are differen-

tiable functions of Z almost everywhere. From now on, t will always

be assumed to be a point at which/, N, and y hâve derivatives (which

we denote/', N', and y'). Note that ||y|| = 1 so

O=^ll3'(0||a = 2(T(Z))/(Z))
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where (•, •) is the inner product, i.e., y and y' are perpendicular.

Also /' = (yN)' =y'N-\-yN'. Since y and y' are orthogonal for each t

and N and N' are scalar functions, [|/'||2 = ||y\/V||2-f-||yAr'||2, so

(3) 11/11/^ = 11/11-
We can estimate ||y'|| as follows: for s>0

||/(< + s) -/(<)|| = ||W + *)) - F(x(0)|| Ú L\\x(t + s)~ *(/)||

= L\\x'(t)\\s + o(s) = L\\f(t)\\s + o(s),

so

(4) ||/'(0|| = L||/(0|| = LN(t),

so

(5) ||y|| = Z,        (from (3) and (4)).

Variations of the next lemma were proved by Fenchel [l], Borsuk

[3], and Milnor [2]. They let x be C2 with ||x'(/)|| =1. Their proofs

are substantially longer.

Lemma.

(6) Tim
J 0

dt ^ 2x.

The lemma says the variation of the unit vector in the direction x'

in one period is at least 27r. This seems intuitively obvious and is

clearly true in dimension » = 2, but we delay the proof.

The proof of the theorem is now completed by combining (5) and

(6):

2tt =  f  ||y'(0lk* = f Lit = Lp,
Jo Jo

that is, £ = 27r/L and the theorem is proved.

We now only need to prove the lemma.

Proof of Lemma. Choose h and h+T in [0, p], T>0, such that

¡|x(fi+T')— x(/i)|| =sup„,r6[o,p] ||x(cr)—x(t)||, (which is the "diameter"

of the trajectory). Since

*i(0 = *(/ - o
is also a periodic solution with period p, we may assume without loss

that h = 0. Write v = x (0) - x ( T). The function
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U(t) = i||x(Z) - X(D||2

has a maximum at Z = 0 so

0 = — «(/) |*_„ = <*(0 - *(r), x'(z)) |i=0 = <«, x'(o)) = <»,/(0)).
at

Similarly, (v,f(T)) = (v, x'(T)) = 0, (letting u(t) =\\\x(t) -x(0)||2).

Claim. /JIMI^^t.
Let  5={x:||x||=l}.  Then y  is a curve with values  in  5,  and

(y (0), v) = 0 and (y ( T), v) — 0. The claim says that the length p of the

curve y on [O, T] is at least it.

Case 1. Assume y(0) = — y(T). Then the shortest curve between

y(0) and y(T) remaining on S is a semicircle with radius 1, so p is

at least it.

Case 2. Assumey(O) ^ -y(T). Writey° = y(0), yT = y(T),y = y°+yT,

m = y°-yT. Then (7, w) = ||;y0||2-||;yr||2 = 0. Let a(t) = (y(t), y)/(y, y).

Then a(T) = ((y —m)/2, 7)/(7, 7) = 1/2. From the definition of a(t),

y(t)—a(t)y = h(t) for some function h(t), where (7, h(t)) = 0. Hence

a(t)y-\-h(t) and —a(t)y-\-h(t) have the same norm ( = 1). Recall

x' = Ny = Nh + Nay and flx'dt = x(T)— x(0) = — «z and (w, 7) = 0, so
foNa = 0. Since a(-) is continuous there exists r0G(0, T) such that

a(To) =0. Define

yi (z) = y(t) for z G [0, r„]

= A(Z) - a(t)y   for Z G [r0> 7"].

Then yx is continuous, and yi(t)ES for all Z and the arc lengths for

y and yi on [O, T] are the same. Note that yi(T) =h(T) — a(T)y

= [yT — \y\— ^y — (y— y°)— 7= —y°= — yi(0). Therefore the shortest

path from yi(0) to yi(T) in S is half a great circle, which has the

length w. Hence the length of y\ (and y) is ^ir, proving the claim.

The length of y on [T, p] (that is, of the other half of the trajec-

tory) is also ^7r since this is the length that would be estimated if

we had started at x(T) instead of x(0). Hence the length of y on

[O, p] is at least 2ir and the lemma is proved.

Remark. In R3, x(t) can be knotted. In this case Milnor [2] essen-

tially proved when F is C1 that JolMI >4fl". Applying this instead of
the lemma, we get the theorem that p>4w/L when x(Z) is a knotted

periodic solution.

Remark on the case p = 2ir/L. If x(Z) is a periodic solution of (1)

with period p and if p = 2ir/L, then (i) ||x'(Z)|| is constant; (ii) the

trajectory of x is a circle, (with radius ||x'(Z)||/i, and center x(Z)
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+x"(i)/L2); and (iii) the two-dimensional disc D whose boundary is

the trajectory of x is the union of concentric periodic orbits with

period p (with F=0 at the center), provided F is defined on D.

Partial sketch of proof of remarks: if p = 2w/L, then where we had

inequalities, we get the equalities

(7) 2w = fP\\y'\\dt,       x= f   \\y'\\dt
J o Jo

(8) IMI = \\f\\/N = L.
From the first half of (8), since ||/'|| =||y'./V||2 + ||yiV'||2, we get ||yiV'||2

= 0 = A77, so N is constant, and from (7), in the proof of the lemma

we must have the length of the curve yi is ir; hence yi (on [0, T] and

on [T, p]) describes half a great circle on 5, and in fact one can see

that y describes half a great circle. Since Nf^y =/qx' = 0, the path y

is a great circle on [0, p]. Therefore the trajectory of x(t) is a planar

"convex" curve. Since N' = 0 = (x', x"), and ||x"|| is constant (a.e.),

the planar convex curve is a circle whose diameter is the (circum-

ference)/^, which =pN/ir, i.e. 2N/L; hence \\x(t)-x(t-p/2)\\ =2N

/L. Sincef(t) = -f(t+p/2),

\\F(x(l)) - F(x(t + p/2))\\ = 2N = L||x(0 - *(/ - i/2)|| ;

that is, the Lipschitz inequality in (2) is an equality for two points

of the circle which are diametrically opposite. It follows that on the

line between the points, i.e., points given by

z = sx(t) + [1 - s]x(t - p/2)        for some í E [0, l],

F(z) = sF(x(t)) + [1 - s]F(x(t - p/2)).

Any other choice of F(z) would contradict (2). We now have an equa-

tion (on the disc D) which has concentric circles for solutions.
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