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I. Systems of exponential polynomials. Tarski has observed in

[2] that there is no decision procedure for the elementary theory of

complex numbers with addition, multiplication, and exponentiation.

In this section a stronger result is proved: there is no uniform pro-

cedure for deciding whether a system of equations built up using

addition, multiplication, and exponentiation has a solution in com-

plex numbers.

We write Rat(x) if x is rational, Int(x) if x is an integer, and

Nat(x) if x is a natural number. In what follows, unless otherwise

specified, variables range over the complex numbers.

It is easy to verify that

(A) Nat(x) <-> exp(2irix) = 1 A exp(2« exp(x log 2)) = 1.

Martin Davis has shown in [l] that for every recursively enu-

merable predicate Q(n), there exists a polynomial P(n, Xi, ■ ■ ■ ,xk,y)

with integer coefficients such that

(B) Q(n) *-> (3xi, ■••,**, y)(P(n, *i, • • •, **, y) = 0 A y = 2*1)

where now the variables range over the natural numbers.

Let 2„ be the system consisting of the following equations:

(i) exp(2«xy) = 1, lújíkk.

(ii) exp(27Tî exp(xy log 2)) = 1, l^j^k.

(iii) y = exp(xi log 2).

(iv) P(n, xi, • • • , xk, y)=0.

It follows from (A) and (B) that Q(n) holds iff the system Sn

has a solution in complex numbers. Let Q(n) be in particular not

recursive. Then there is no algorithm to determine, given n, whether

the system 2„ has a solution in complex numbers.

The equations in the systems 2„ do not all have integer coefficients.

This defect can be remedied. For

(a) Rat(x)<->(3w, v)(exp(u) = lAexp(xw) = lAuv = l).

Let the predicate S(y, x) be defined by

(b) S(y, x)<->(3w)(exp(w) =2/\y = exp(xw)).

Then we have

(c) Int(*)«->(3y)(S(y, x)ARat(x)ARat(y)).
For if x is rational, S(y, x) iff y = 2*exp(27riwx) for some integer w. If
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y is rational, we must have exp(2irz«x) = ±1. When x is rational,

±2X is rational iff x is an integer. But

(d) Nat(*)*-»(3y)(5(y, x)AInt(x)AInt(y)) and
(e) If x is a natural number, then y = 2x<->S(y, x)ANat(y).

From (a), (b), (c), (d), (e) and (B), it is now easy to construct

systems 2„' with integer coefficients such that 2„' has a solution in

complex numbers iff Q(n) holds. Hence we have proved

Theorem I. There is no uniform procedure for deciding whether a

system of equations with integer coefficients, built up by addition, mul-

tiplication, and exponentiation has a solution in complex numbers.

By way of contrast, it is not known if there is a procedure for de-

ciding whether a system of equations of the kind described in Theo-

rem I has a solution in real numbers. The situation changes if we

allow complex coefficients, for the systems 2„ described in this sec-

tion have a solution in complex numbers iff they have a solution in

real numbers.

II. Systems of algebraic differential equations. In this section it

is shown that there is no uniform decision procedure for whether a

system of algebraic differential equations with integer coefficients

has a solution in real-valued functions defined in the interval [0, l].

Lower case Latin letters will denote in this section functions defined

in [0, 1 ] of the real variable a.

It is easy then to verify that:

(C) Nat(x) <-> (3w,f)(x = w2 A x' = 0 A/" + t2x2/ = 0 A/(0)

= 0A/'(0) = 1 A/(D =0).

If x is a constant, then

(D) y - 2X «-> (3g)(g' = (* log 2) g A g(0) = 1A/ = 0A g(D = y(D).

Let An be the system consisting of the following equations with

boundary conditions:

(i) *,=< x/=0; tf+rtfo-O; /,(0)=0; /Í(0)-1¡ /,(1)=0
(* = 1, •••,*).

(ii) g' = (Xl log 2)g; g(0) = l; y' = 0; g(l)=y(l).

(iii) P(n, xi, • • • , xt, y)=0.

Then from (B), (C), (D), the predicate Q(n) of §1 holds iff the

system An has a solution in real-valued functions defined in [0, l].

By altering our systems slightly, we can ensure that all the coeffi-

cients are integers. For 5 = log 2 iff s' = 0 and there exists a function

h such that h' = sh, &(0) = 1, Ä(l)=2. Also Z = ir iff Z' = 0 and there is
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a function k such that k"+t2k = 0, ¿(0)=0, £'(0) = 1, and ¿(1)=0,

where further 0=^4. But 0gíá4 iff (3p, g)( ¿ = p2Ap2+32 = 4).

All the boundary conditions can also be removed, at the expense of

introducing new function variables. For in general if m and « are

constants, then/(w)=« iff (3g)(/—« = (m— a)g). Hence we can in a

simple way construct systems A„' of algebraic differential equations

with integer coefficients and no boundary conditions such that An'

has a solution in real-valued functions defined on [0, 1 ] iff Q(n)

holds. Proceeding as in §1, we have proved

Theorem II. There is no uniform procedure for deciding whether a

system of algebraic differential equations with integer coefficients has a

solution in real-valued functions defined on [0, l].

In the construction of the systems A„, equation (iii) can be re-

placed by

(iii)* P(n, xi(l), ■ ■ -,xk(l),g(l))=0.

The equations involving y can then be removed from (ii). All the

other boundary conditions of the systems An are eliminated in the

usual way. If the predicate Q(n) is chosen to be not recursive, we have

constructed a system A* of algebraic differential equations involving

(among others) the function variables X\, • • • , xk, g, and a poly-

nomial P(n, Xi, ■ ■ ■ , xk, g) with integer coefficients such that there

is no algorithm to determine, given «, whether A* has a solution

satisfying the boundary condition P(n, Xi(l), • • • , x4(l), g(l))=0.

III. The uniqueness problem. If the functions are suitably re-

named, the system A'n of §11 can be assumed to consist of the equa-

tions Di(n, gi, ■ ■ ■ , gm) =0,i=l, ■ ■ ■ , I. This system has a solution

iff the equation ^<,il>? = 0 has a solution. Let 2~2t~i L>\

= D(n, gi, ■ ■ ■ , gm). By inspection of the systems A„', if (gu • ■ • , gm)

is a solution, not all the g,- are identically 0.

For a suitable choice of A„' there is no algorithm that determines,

given «, whether the equation D(n, gi, • ■ ■ , gm) =0 has a solution,

and hence no algorithm for whether this equation has no solution.

ButD(»,gi, • • • , gm)=0 has no solution iff (YT-i ¿)D(n,gu ■ • • ,gm)

= 0 has a unique solution. Hence we have proved

Theorem III. There is no uniform procedure for deciding whether a

system of algebraic differential equations with integer coefficients has a

unique solution in real-valued functions defined on [0, l].

IV. Partial differential equations. In §§II and III, our systems

have   involved   several   function   symbols.   Results   analogous   to
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Theorems II and III can be proved for partial differential equations

in only one function symbol. The procedure is very simple. Assume

that the equations of the systems A„' of §11 involve the m function

symbols gi, • • • , gm. Let G = G(a, ßu ■ ■ ■ , ßm). If G satisfies the

system of partial differential equations

(E) d2G/dßidßj = 0,       lúiúm,\újúm,

then dG/dßi is a function of a alone. If we set gi=dG/dßi, and in

A„' replace differentiation with respect to a by partial differentiation

with respect to a, then the modified system An' together with (E)

has a solution G iff the original system A„' has a solution. Recall

that the system Z>¿ = 0 (lúiúl) has a solution iff the equation

¿2i-i D2 = 0 has a solution. Then

Theorem IV. There is no uniform procedure for deciding whether

an algebraic partial differential equation with integer coefficients has a

solution (or a unique solution).

Other decision problems in analysis can be settled using the

techniques of this paper. As an example, we note that it is easy to

find functional equations for which exp(x) and sin(x) respectively

are the only smooth solutions. From this it is relatively easy to show

that there is no uniform procedure for deciding whether a system of

algebraic functional equations with integer coefficients has con-

tinuous solutions.
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