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In this paper we consider the real-valued solutions of the equation

(l) y" + q(t)r = o

where q(t) =g0 and continuous on some half line [a, oo ) and y satisfies

0<y=p/q<l where p, q are odd integers. Our purpose is to give

conditions under which all solutions of (1) are nonoscillatory. The

result we give is similar to that given by Atkinson [l] for the case

7>1 but the proof is different.

The restriction to y=p/q where p and q are odd is significant. For

example, if q is even and p odd, then oscillatory solutions are not

real-valued. If p is even and q odd, then all nonzero solutions are

trivially nonoscillatory. Similar problems arise if y is irrational.

I ,We begin with some definitions and basic facts. A solution of (1)

is said to be extendable (continuable) if it exists on some half line

[b, »). Since 0<7<1, all solutions of (1) are extendable. This fol-

lows from a theorem of Wintner [3, p. 29]. A nontrivial solution of

(1) is called oscillatory if it has arbitrarily large zeros. Otherwise, a

solution is called nonoscillatory, i.e., if it is of one sign for large t.

Since 7 is restricted to be odd, solutions with real initial conditions

are real-valued and the negative of a solution is again a solution.

For the sake of completeness we state some related results. Licko

and Svec [5] have shown that all solutions of (1) are oscillatory if

and only if f°cs''q(s)ds = oo. Belohorec [2 ] has shown the following.

If there exists a number 0, 0</3<(l-7)/2, such that/(í)¿(3+7)/(2+,S) Î

ÄTi<ooJ then all nontrivial solutions of (1) are nonoscillatory. If

f(t)ta+^l2i K2>0, then (1) has both (nontrivial) oscillatory and

nonoscillatory solutions. For similar results pertaining to the case

1<7, see [l] and [4].

We can now state our major result. Its proof will be preceded by

three lemmas.

Theorem. // q(t)EC'[a, <»), q(t)>0 and q'(t)^0for t^a and if
fa>sq(s)ds< oo, then (1) has no oscillatory solutions.

Lemma 1. Suppose that fKsq(s)ds< oo and let K>0 be given. Then
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there is a t0^a and a solution y(t) of (1) defined on [to, °°) such that

K/2^y(t)^K for t^k and lim,-«, y(t)=K.

Proof. Our proof is a modification of a proof given in [l]. Con-

sider the integral equation

(2) m = K-f   (s - t)q(s)(t(s)yds.

Let to be such that

/,
(s - t0)q(s)ds < min{(K^)/2, [7(2/X)1^]-1}

h

To prove the lemma it suffices to show that (2) has a solution \¡/(t)

such thatK/2ú^(t)^K.

Letio(t) = K, t^to, and

(s - t)q(s)(tn(s)yds,        t ^ t0.
t

Then K/2^n(t)^K for f^t0. Note that F(\p)=ipi satisfies a

Lipschitz condition for K/2^\[/^K with Lipschitz constant

y(2/Ky~y. Therefore

! (irVn(O)* - (Ut))" I    â y(2/K)^ I W) - *.(0 !

for t^ta and

/oo
(s - t)q(s)ds

also for t^to. This shows that ipn(t)—»p(t) uniformly on [t0, =°) and

hence ip(t) is a solution of (2) satisfying K/2 ^\p(t) ^K for t^t0.

Lemma 2. Suppose that q(t)EC'[a, »), g(¿)>0 a«d q'(t)^0for

t^a. Let y(t) be a nontrivial oscillatory solution of (1). Let \tn\ be a

sequence of consecutive relative maxima of \y(t)\ such that n > m=>tn > tm.

Then \y(t„)\ is nondecreasing as « increases and lim,,-*, tn= ».

Proof. Multiply (1) by y'(t)/q(t) and integrate from /„ to tn+i to

obtain

/,

«•h (y'(s))2   q'(s) (y(tn+i)y+1     (y(k)y+l    n
-ds H-= 0.

2        (q(s)y 7+1 7 + 1

Since q'(t)^0, we get | y(tn+1) | ^ |y(tn)\.

Note that lim,,-,*, tn = oo is not immediate because global unique-
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ness for initial value problems does not hold in the case 7<1. Sup-

pose that lirru^oo tH = t*< <x>. Since | y(t) \ is increasing at its relative

maxima, we can apply the mean value theorem to get a sequence

{í„}—>/* such that lim*.,.,, |y'(sB)| = °°- But this contradicts the fact

that y(t) exists on [a, 00).

Lemma 3. Let u(t), v(t), w(t) be solutions of (1) satisfying 0^u(t)

^v(t)^w(t) for t'^t^t". Define <p(t) by

<p(t) = (w — v)(v' — u') — (v — u)(w' — v').

Then 4>(t')^<p(t").

Proof. The statement and proof of this lemma are adapted from

Lemma 1 of [ó]. Note that in our case

(»T — wT)(w — u) ^ (w-i — uy)(v — u).

Proof of Theorem. Suppose to the contrary that yi(t) is an

oscillatory solution of (1). Let {tn} be the sequence of consecutive

relative maxima of | yi(i) |. Then lim,,-« tn = 00 and 0 < lim,,-,,» |yi(/7i)|

= L:£ 00 by Lemma 2.

Let 0<K<L and let y2(t) be a solution of (1) such that y2(t) j K

as t—»00 (by Lemma 1). Then we can find two points t', t" such that

the following situation occurs: 0<yi(2') =y2(t'), 0<yi(t") =y%{t"), and

0<y2(0<yi(0 for t'<t<t". If we now set u(t) = 0, v(t)=y2(t), and

w(t) =yi(t), we see that <p(t') <<p(t") (<j>(t) is defined in Lemma 3).

But this contradicts Lemma 3. This proves the theorem.

Remark. The question arises as to whether the conditions q(t) >0,

q'(t) ^0 are necessary in the theorem. We conjecture that the weaker

condition q(t)^0 is not sufficient. However, this weaker condition

is sufficient for the following corollary.

Corollary. If fxsq(s)ds< oo and if y(t) is an oscillatory solution

of (1), then limí-.«, y(t) =limi_>00 y'(t) =0.

Proof. The fact that limi-»« y(t) = 0 follows from the proof of the

theorem. Given e>0 pick t0 so large that /," q(s)ds<1 and \y(t)\ y<e

for ttZto. Since y(t) is oscillatory we may suppose thaty'(¿0) =0. There-

fore, by integrating (1) from t0 to / we get

I /(/) I   á e f   q(s) < e, t à t0.
J <o

Since « is arbitrary it follows that lim^o,, y'(t)=0 (see also [2,

Theorem 2]).
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