A NONOSCILLATION THEOREM FOR A NONLINEAR
SECOND ORDER DIFFERENTIAL EQUATION

J. W. HEIDEL

In this paper we consider the real-valued solutions of the equation
€ y' 9@y =0

where ¢(¢) 20 and continuous on some half line [a, ) and v satisfies
0<y=p/¢<1 where p, ¢ are odd integers. Our purpose is to give
conditions under which all solutions of (1) are nonoscillatory. The
result we give is similar to that given by Atkinson [1] for the case
4 >1 but the proof is different.

The restriction to y =$/q where p and ¢ are odd is significant. For

example, if ¢ is even and p odd, then oscillatory solutions are not
real-valued. If p is even and ¢ odd, then all nonzero solutions are
trivially nonoscillatory. Similar problems arise if 4 is irrational.
' We begin with some definitions and basic facts. A solution of (1)
is said to be extendable (continuable) if it exists on some half line
[6, »). Since 0<y <1, all solutions of (1) are extendable. This fol-
lows from a theorem of Wintner [3, p. 29]. A nontrivial solution of
(1) is called oscillatory if it has arbitrarily large zeros. Otherwise, a
solution is called nonoscillatory, i.e., if it is of one sign for large ¢.
Since ¥ is restricted to be odd, solutions with real initial conditions
are real-valued and the negative of a solution is again a solution.

For the sake of completeness we state some related results. Li¢ko
and Svec [5] have shown that all solutions of (1) are oscillatory if
and only if [*s7¢(s)ds= ». Belohorec [2] has shown the following.
If there exists a number 3, 0 <8< (1 —%)/2, such that f(¢)s@+m/2+6) 7
K;< «, then all nontrivial solutions of (1) are nonoscillatory. If
fte+vi2 | K,>0, then (1) has both (nontrivial) oscillatory and
nonoscillatory solutions. For similar results pertaining to the case
1<y, see [1] and [4].

We can now state our major result. Its proof will be preceded by
three lemmas.

TaEOREM. If ¢() EC'[a, ©), ¢(t)>0 and ¢'(t) SO for t=a and if
J*sq(s)ds< o, then (1) has no oscillatory solutions.

LeEMMA 1. Suppose that [<sq(s)ds<  and let K >0 be given. Then
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there is a ty=a and a solution y(t) of (1) defined on [to, ) such that
K/2=2y(t) 2K for t=t, and lim,., y(t)=K.

ProoF. Our proof is a modification of a proof given in [1]. Con-
sider the integral equation

@ w=-x-| " (s — Dg(s) @(s))ds.
Let ¢y be such that

fw(s — to)g(s)ds < minf{(K)/2, [y(2/K)*-7]1}.

‘0

To prove the lemma it suffices to show that (2) has a solution ¥(¢)
such that K/2 Sy(f) £K.
Let yo(})=K, t=ty, and

boa) = K = [ 6= a0 @nds, 1240

Then K/2=y,(t)<K for t=t,. Note that F(y)=y" satisfies a
Lipschitz condition for K/2Z<¢ =K with Lipschitz constant
v(2/K)-". Therefore

| @anr () — @a(®)] £ ¥Q/E) | Ynsa(t) — ¥a(d) |
for t =ty and

| Yni1(® — ¥u(® | = ¥(2/K)*=" max | ¢u(t) = ¢ua() | f w(s — B)g(s)ds

2ty
also for t=1t,. This shows that ¥,(t)—¥(t) uniformly on [t, ®) and
hence ¥ (t) is a solution of (2) satisfying K/2 =¢/(t) =K for t=to.

LEMMA 2. Suppose that g(t)EC'[a, =), qt)>0 and ¢'(t) <0 for
t=a. Let y(¢) be a nontrivial oscillatory solution of (1). Let {tn} be a
sequence of consecutive relative maxima of | y(£)| such that n>m=st,> tm.
Then |y(t,,)| is nondecreasing as n increases and lim,,, b, = ©.

Proor. Multiply (1) by ¥'(£)/q(t) and integrate from ¢, to f.41 to
obtain
f”"“ (&' ()* ¢(s) ds + (Yt (y(E2))7+!
tn 2 (g7 v+1 y+1

Since ¢'(¢) £0, we get |y(t,.+1)| = |y(t,.)| .
Note that limg., t»= % is not immediate because global unique-
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ness for initial value problems does not hold in the case v <1. Sup-
pose that limy.e £, =t*< «. Since |y(t)] is increasing at its relative
maxima, we can apply the mean value theorem to get a sequence
{sa}—t* such that lim,., | 9'(s.)| = . But this contradicts the fact
that y(¢) exists on [a, ®).

LeEmMA 3. Let u(t), v(t), w(t) be solutions of (1) satisfying 0=u(t)
Sv(t) Sw(t) for t' St=t". Define ¢(t) by

o) = (w— ) — o) — (v — u)(w' — 7).
Then ¢ (') Z¢(t").

Proor. The statement and proof of this lemma are adapted from
Lemma 1 of [6]. Note that in our case

W —u)(w—u) = (W — u)v — u).

ProOF oF THEOREM. Suppose to the contrary that ¥ (f) is an
oscillatory solution of (1). Let {tn} be the sequence of consecutive
relative maxima of |y1(t)| . Then lim,., t,= © and 0<lim,, ]yl(t,,)l
=L =<« by Lemma 2.

Let 0<K <L and let y,(f) be a solution of (1) such that y,(¢) T K
as t—« (by Lemma 1). Then we can find two points ¢/, ¢’/ such that
the following situation occurs: 0 <y1(t') =y2(t'), 0 <y:1(t"") =y.(¢'"), and
0<y:(t) <y(t) for t'<t<t”. If we now set u(t)=0, v(t) =y,(¢), and
w(t) =y:1(f), we see that ¢(t') <@(t’) (¢(¢) is defined in Lemma 3).
But this contradicts Lemma 3. This proves the theorem.

REMARK. The question arises as to whether the conditions ¢(¢) >0,
¢'(¢) £0 are necessary in the theorem. We conjecture that the weaker
condition ¢(t) =0 is not sufficient. However, this weaker condition
is sufficient for the following corollary.

COROLLARY. If [*sq(s)ds<  and if y(t) is an oscillatory solution
of (1), then lim,,, y(¢) =lim.,, y'(t) =0.

Proor. The fact that lim.., y(¢) =0 follows from the proof of the
theorem. Given €>0 pick £, so large that [ ¢(s)ds<1 and !y(t)l r<e
for t = to. Since y(t) is oscillatory we may suppose that y’(¢,) =0. There-
fore, by integrating (1) from £, to ¢ we get

t
40} éef 9s) <e¢ L=ty
t

0

Since € is arbitrary it follows that lim., y'({)=0 (see also [2,
Theorem 2]).
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