A NONOSCILLATION THEOREM FOR A NONLINEAR SECOND ORDER DIFFERENTIAL EQUATION

J. W. HEIDEL

In this paper we consider the real-valued solutions of the equation

$$y'' + q(t)y^{\gamma} = 0$$

where $q(t) \ge 0$ and continuous on some half line $[a, \infty)$ and γ satisfies $0 < \gamma = p/q < 1$ where p, q are odd integers. Our purpose is to give conditions under which all solutions of (1) are nonoscillatory. The result we give is similar to that given by Atkinson [1] for the case $\gamma > 1$ but the proof is different.

The restriction to $\gamma = p/q$ where p and q are odd is significant. For example, if q is even and p odd, then oscillatory solutions are not real-valued. If p is even and q odd, then all nonzero solutions are trivially nonoscillatory. Similar problems arise if γ is irrational.

We begin with some definitions and basic facts. A solution of (1) is said to be extendable (continuable) if it exists on some half line $[b, \infty)$. Since $0 < \gamma < 1$, all solutions of (1) are extendable. This follows from a theorem of Wintner [3, p. 29]. A nontrivial solution of (1) is called oscillatory if it has arbitrarily large zeros. Otherwise, a solution is called nonoscillatory, i.e., if it is of one sign for large t. Since γ is restricted to be odd, solutions with real initial conditions are real-valued and the negative of a solution is again a solution.

For the sake of completeness we state some related results. Ličko and Švec [5] have shown that all solutions of (1) are oscillatory if and only if $\int_{-\infty}^{\infty} s^{\gamma}q(s)ds = \infty$. Belohorec [2] has shown the following. If there exists a number β , $0 < \beta < (1-\gamma)/2$, such that $f(t)t^{(3+\gamma)/(2+\beta)} \uparrow K_1 < \infty$, then all nontrivial solutions of (1) are nonoscillatory. If $f(t)t^{(3+\gamma)/2} \downarrow K_2 > 0$, then (1) has both (nontrivial) oscillatory and nonoscillatory solutions. For similar results pertaining to the case $1 < \gamma$, see [1] and [4].

We can now state our major result. Its proof will be preceded by three lemmas.

THEOREM. If $q(t) \in C'[a, \infty)$, q(t) > 0 and $q'(t) \le 0$ for $t \ge a$ and if $\int_{-\infty}^{\infty} sq(s)ds < \infty$, then (1) has no oscillatory solutions.

LEMMA 1. Suppose that $\int_{-\infty}^{\infty} sq(s)ds < \infty$ and let K > 0 be given. Then

Presented to the Society November 9, 1968; received by the editors June 24,1968.

there is a $t_0 \ge a$ and a solution y(t) of (1) defined on $[t_0, \infty)$ such that $K/2 \le y(t) \le K$ for $t \ge t_0$ and $\lim_{t \to \infty} y(t) = K$.

PROOF. Our proof is a modification of a proof given in [1]. Consider the integral equation

(2)
$$\psi(t) = K - \int_{t}^{\infty} (s-t)q(s)(\psi(s))^{\gamma} ds.$$

Let t_0 be such that

$$\int_{t_0}^{\infty} (s-t_0)q(s)ds < \min\{(K^{1-\gamma})/2, [\gamma(2/K)^{1-\gamma}]^{-1}\}.$$

To prove the lemma it suffices to show that (2) has a solution $\psi(t)$ such that $K/2 \le \psi(t) \le K$.

Let $\psi_0(t) \equiv K$, $t \ge t_0$, and

$$\psi_{n+1}(t) = K - \int_{t}^{\infty} (s-t)q(s)(\psi_{n}(s))^{\gamma}ds, \qquad t \geq t_{0}.$$

Then $K/2 \le \psi_n(t) \le K$ for $t \ge t_0$. Note that $F(\psi) = \psi^{\gamma}$ satisfies a Lipschitz condition for $K/2 \le \psi \le K$ with Lipschitz constant $\gamma(2/K)^{1-\gamma}$. Therefore

$$\left| (\psi_{n+1}(t))^{\gamma} - (\psi_n(t))^{\gamma} \right| \leq \gamma (2/K)^{1-\gamma} \left| \psi_{n+1}(t) - \psi_n(t) \right|$$

for $t \ge t_0$ and

$$|\psi_{n+1}(t) - \psi_n(t)| \le \gamma (2/K)^{1-\gamma} \max_{t \ge t_0} |\psi_n(t) - \psi_{n-1}(t)| \int_t^{\infty} (s-t)q(s)ds$$

also for $t \ge t_0$. This shows that $\psi_n(t) \to \psi(t)$ uniformly on $[t_0, \infty)$ and hence $\psi(t)$ is a solution of (2) satisfying $K/2 \le \psi(t) \le K$ for $t \ge t_0$.

LEMMA 2. Suppose that $q(t) \in C'[a, \infty)$, q(t) > 0 and $q'(t) \leq 0$ for $t \geq a$. Let y(t) be a nontrivial oscillatory solution of (1). Let $\{t_n\}$ be a sequence of consecutive relative maxima of |y(t)| such that $n > m \Rightarrow t_n > t_m$. Then $|y(t_n)|$ is nondecreasing as n increases and $\lim_{n \to \infty} t_n = \infty$.

PROOF. Multiply (1) by y'(t)/q(t) and integrate from t_n to t_{n+1} to obtain

$$\int_{t_n}^{t_{n+1}} \frac{(y'(s))^2}{2} \cdot \frac{q'(s)}{(q(s))^2} ds + \frac{(y(t_{n+1}))^{\gamma+1}}{\gamma+1} - \frac{(y(t_n))^{\gamma+1}}{\gamma+1} = 0.$$

Since $q'(t) \leq 0$, we get $|y(t_{n+1})| \geq |y(t_n)|$.

Note that $\lim_{n\to\infty} t_n = \infty$ is not immediate because global unique-

ness for initial value problems does not hold in the case $\gamma < 1$. Suppose that $\lim_{m\to\infty} t_n = t^* < \infty$. Since |y(t)| is increasing at its relative maxima, we can apply the mean value theorem to get a sequence $\{s_n\} \to t^*$ such that $\lim_{n\to\infty} |y'(s_n)| = \infty$. But this contradicts the fact that y(t) exists on $[a, \infty)$.

LEMMA 3. Let u(t), v(t), w(t) be solutions of (1) satisfying $0 \le u(t)$ $\le v(t) \le w(t)$ for $t' \le t \le t''$. Define $\phi(t)$ by

$$\phi(t) = (w - v)(v' - u') - (v - u)(w' - v').$$

Then $\phi(t') \ge \phi(t'')$.

PROOF. The statement and proof of this lemma are adapted from Lemma 1 of [6]. Note that in our case

$$(v^{\gamma}-u^{\gamma})(w-u) \geq (w^{\gamma}-u^{\gamma})(v-u).$$

PROOF OF THEOREM. Suppose to the contrary that $y_1(t)$ is an oscillatory solution of (1). Let $\{t_n\}$ be the sequence of consecutive relative maxima of $|y_1(t)|$. Then $\lim_{n\to\infty} t_n = \infty$ and $0 < \lim_{n\to\infty} |y_1(t_n)| \equiv L \le \infty$ by Lemma 2.

Let 0 < K < L and let $y_2(t)$ be a solution of (1) such that $y_2(t) \uparrow K$ as $t \to \infty$ (by Lemma 1). Then we can find two points t', t'' such that the following situation occurs: $0 < y_1(t') = y_2(t')$, $0 < y_1(t'') = y_2(t'')$, and $0 < y_2(t) < y_1(t)$ for t' < t < t''. If we now set $u(t) \equiv 0$, $v(t) = y_2(t)$, and $w(t) = y_1(t)$, we see that $\phi(t') < \phi(t'')$ ($\phi(t)$ is defined in Lemma 3). But this contradicts Lemma 3. This proves the theorem.

REMARK. The question arises as to whether the conditions q(t) > 0, $q'(t) \le 0$ are necessary in the theorem. We conjecture that the weaker condition $q(t) \ge 0$ is not sufficient. However, this weaker condition is sufficient for the following corollary.

COROLLARY. If $\int_{-\infty}^{\infty} sq(s)ds < \infty$ and if y(t) is an oscillatory solution of (1), then $\lim_{t\to\infty} y(t) = \lim_{t\to\infty} y'(t) = 0$.

PROOF. The fact that $\lim_{t\to\infty} y(t) = 0$ follows from the proof of the theorem. Given $\epsilon > 0$ pick t_0 so large that $\int_{t_0}^{\infty} q(s)ds < 1$ and $|y(t)|^{\gamma} < \epsilon$ for $t \ge t_0$. Since y(t) is oscillatory we may suppose that $y'(t_0) = 0$. Therefore, by integrating (1) from t_0 to t we get

$$|y'(t)| \le \epsilon \int_{t_0}^t q(s) < \epsilon, \quad t \ge t_0.$$

Since ϵ is arbitrary it follows that $\lim_{t\to\infty} y'(t) = 0$ (see also [2, Theorem 2]).

REFERENCES

- 1. F. V. Atkinson, On second-order non-linear oscillations, Pacific J. Math. 5 (1955), 643-647.
- 2. Štefan Belohorec, On some properties of the equation $y'' + f(x)y^{\alpha}(x) = 0$, $0 < \alpha < 1$, Mat. Časopis Sloven. Akad. Vied. 17 (1967), 10-19.
 - 3. Philip Hartman, Ordinary differential equations, Wiley, New York, 1964.
- **4.** I. T. Kiguradze, On conditions for the oscillation of solutions of the equation $u'' + a(t) |u|^n \operatorname{sgn} u = 0$, Časopis Pěst. Mat. 87 (1962), 492–495. (Russian)
- 5. Imrich Ličko and Marko Švec, Le charactère oscillatoire des solutions de l'équation $y^{(n)} + f(x)y^{\alpha} = 0$, n > 1, Czechoslovak Math. J. 88 (1963), 481–491.
- 6. R. A. Moore and Z. Nehari, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc. 93 (1959), 30-52.

University of Tennessee