
INTERSECTION THEOREMS FOR POSITIVE SETS1

WOLFHARD HANSEN AND VICTOR KLEE

Introduction. Helly's intersection theorem [7] asserts that if C is

a finite family of convex sets in Rd with HC = 0 then C admits a sub-

family K with C\K=0 and \k\ gd + 1. The shortest proof, due to
Radon [9], is based on the fact that a subset of Rd is affinely inde-

pendent if and only if it does not contain disjoint sets whose convex

hulls intersect. Here a similar approach leads to short proofs of old

and new intersection theorems for positive sets.

Throughout this note, E denotes a vector space over an ordered

field. When E is said to be d-dimensional it should be understood

that d is finite. A subset P of E is called positive provided that

ax+ßyEP whenever x, y£P and a, ß^O; equivalently, P is a con-

vex cone with apex 0. (When E = Rd, the intersections of positive

sets with the unit sphere are precisely the sets which are spherically

convex in one of the common meanings of that term. Thus for real

vector spaces our theorems could be stated alternatively in terms of

spherically convex sets.) The positive hull pos X of a set XEE is the

intersection of all positive sets containing X; equivalently, it is the

set of all points of the form ¿_iXex\xx with Xx^0for all xandXa; = 0

for all but finitely many x. Note that lin X = pos X — pos X, where

lin X is the linear hull of X.

Strong positive independence. A subset X of E~ {0} is called

strongly positively independent provided that pos FApos ZE {0}

whenever Y and Z are disjoint subsets of X. This notion was intro-

duced by McKinney [8] and characterized in various ways by him,

Bonnice and Klee [l], and Reay [l0]. The most useful characteriza-

tion is the following, proved by McKinney when pos X = lin X. Our

proof is considerably shorter than his.

Theorem (McKinney). A subset X of E is strongly positively

independent if and only if E can be expressed as a direct sum of linear

subspaces, E = E0® (BaeAEa, in such a way that

(a) XCEoWaSAEa,

(b) XC\Eo is linearly independent,

(c) for each aEA the subspace Ea is finite-dimensional and XC\Ea
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consists of the points of a linear basis for Ea together with a sum of nega-

tive multiples of these points.

Proof. For the "if" part it suffices to note that each of the inter-

sections XC\Ea is strongly positively independent. For the "only if"

part, consider a strongly positively independent subset A of £ and

let B be a linear basis for X—that is, B is linearly independent and

5GAClin B. Let A =X~B. For each point x of A there is a unique

scalar function X* on B such that X£ = 0 for all but finitely many bEB

and x= - £66BX;ô. Let Bx= {bEB: K>0}. Then

(1) x + £ ybb  =     £    (-Xb)b
bBBx beB~Bx

and it follows from strong positive independence that both sides of

(1) are equal to 0. Note that BxC\By = 0 whenever x, yEA with

Xr^y. For suppose the contrary and let p = max{\l/'Kvb: bEBy}>0.

Then

* +   £   Kb = M- +   £   G»x? - \t)b +   £   Kb
b£Bx~By b£Bxr\B„ beBv~Bx

and it follows from strong postive independence that both sides are 0.

Referring to (1), we conclude that ^bEBxnByKb = 0, a contradiction

implying BxC\By = 0.

Now let B' be a linear basis for E containing B, let

En = lin ( B' ~ U  Bx ),

and for each xEA let Ex = \\n Bx. Then E = Eo®®xeaEx and condi-

tions (a), (b) and (c) are satisfied. □

The subspaces Ea in the above decomposition are uniquely deter-

mined by X, for they are exactly those finite-dimensional subspaces

7 of £ such that L = pos(XC\L) and 1 +dim L = | XC\L \. (By Davis

[3], McKinney [8] and others they have been called the minimal

subspaces associated with X.) The set X(~\Eo is also determined by X,

as is £0 itself when lin X = E. When £ is finite-dimensional the

cardinalities |Xn£0| and |xn£a| can be arranged in a finite se-

quence which starts with | Xf~\Eo\ and thereafter lists the numbers

I A^£a| in increasing order and with proper multiplicity. This se-

quence will be called the invariant of X in £. For example, the se-

quence (1 ; 2, 2, 3) is the invariant in A5 of the eight-pointed strongly

positively independent set represented by the columns of the follow-
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ing matrix:

10 0 0 0 0 0 0

0 1-10 0 0 0 0

0 0 0 1-10 0 0

0 0 0 0 0 10-1

0     0     0     0     0     0      1-1

The term invariant is justified by the first part of the following

theorem, whose straightforward proof is left to the reader.

Theorem. Suppose that E is d-dimensional. Two strongly positively

independent subsets X and Y of E have the same invariant in E if and

only if E admits a linear automorphism carrying the rays from the

origin through the points of X onto the rays from the origin through the

points of Y. A sequence (t0; k, ■ ■ ■ , tr) of integers is the invariant in E

of some strongly positively independent set of cardinality n if and only

if the following conditions are all satisfied: 0^t0; 2^ti^ ■ ■ ■ ̂ tr;

n=Y¡0ti-¿d+r.

With slight modifications the above theorem can be extended to

the infinite-dimensional case. From the theorem's second assertion

it follows readily that d+ [d/j] is the maximum cardinality of strongly

positively independent subsets of E in which each j-pointed set is

linearly independent.

A subset C of E is called a cross basis for E (called a maximal posi-

tive basis by Davis [3] and McKinney [8]) provided that C consists

of the points of a linear basis for E together with a negative multiple

of each of these points. The following is an immediate consequence

of the preceding theorems.

Corollary. Suppose that E is d-dimensional and XEE<^>{o}. If

\X\ >2d then X contains two disjoint subsets whose positive hulls have

a common nonzero point. The same is true when \X\ =2d unless X is a

cross basis for E.

Intersection theorems. When IC£~|0) we will say that the

sets of the form posiX^jx}), for xEX, are associated with X. Note

that all the sets associated with a cross basis are closed halfspaces.

Before proving the main intersection theorems, we illustrate the

method to be employed by proving the following result of Robinson

[11].

Corollary (Robinson) . Suppose that E is d-dimensional and P is
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a finite family of positive sets in E with flPCfo}. Then P admits a

subfamily Q with f~)0C{o} and \q\ ^2d. Indeed, there is such a Q

with \q\ <2d unless P consists of the 2d half spaces associated with a

cross basis for E or of such half spaces together with E itself.

Proof. Let Qi, • • • , Qn be distinct members of P forming a sub-

family Q with flQC {0} and |Q| a minimum. For each i there is a

nonzero point XíEOí^íQí- If Xi = xk with i^k then XiEOQ- We may

assume, therefore, that the xis are all distinct and let X denote the

«-pointed set {xi, • • ■ , xn}. If A contains two disjoint sets whose

positive hulls have a common nonzero point v then vEf\Q, an impos-

sibility since flQC {0}. From the preceding corollary it follows that

n<2d or n = 2d and A is a cross basis. It remains to examine the

nature of P in the latter instance. Plainly Qi is a halfspace associated

with the cross basis X, for Qi is positive and X~ {xi} EQi^E. Con-

sider an arbitrary member P of P-~0. If PDA then of course P=E.

If there is an i for which x.-fJP, then {p} W(Q~{()¿}) is a subfamily

of P with intersection C {0} and by the earlier reasoning is the set

of all halfspaces associated with a cross basis for £. It then follows

that P = Qi. D
The special case of the above result in which P consists of closed

halfspaces has (or its polar equivalent has) been proved by Steinitz

[12], Dines and McCoy [4], Robinson [ll], Gustin [ó], Gale [5]

and others, and has been applied to systems of linear inequalities by

Blumenthal [o]. The polar equivalent asserts that if pos A = £ then

pos F = £ for some FGA with | F| =î2d; further, there is such a Y

with I F| < 2d unless A is a cross basis for £. See Danzer, Grünbaum,

and Klee [2] for references to related results.

The statements of our main theorems will require some more

definitions. For any set Z let d^Z) denote the maximum of the

dimensions of the linear subspaces contained in Z. For any family Z

of sets let

¿*(Z) = minzeZrii(Z),        k*iZ) = maxZezdz,(Z),

and

liZ) = ¿L(UZ).

The family P is said to be compatible with the invariant (¿o, h, ■ • ■ ,

tT) provided that there exists a strongly positively independent set X

in E with this invariant such that each member of P contains a mem-

ber of Ax, the family of all sets associated with X.

Theorem. Suppose that E is a d-dimensional space, O^k^l^d, and
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m = min(k + l, /). Let Q be a finite family of positive sets in E that is

minimal with respect to having f]QE {o}. If k*(Q) ̂ k and l(Q) <¿l then

\Q\ =d+m, with equality if and only if Q is compatible with

(d — m — s;     2, • • ■ , 2,   2 + s)

(m - 1    2'í)

for some 0¿s^l — m.

Proof. Let Qi, ■ ■ ■ , Qn be the n members of Q and let

X= {xi, • ■ • , Xn}, where for each i the point xt- is such that

Ot^XíEOí^í Qt- Let (t0; h, ■ ■ ■ , tT) be the invariant of the strongly

positively independent set X and let

E = Eo © Ei © • ■ • e Er

be the direct sum decomposition of E described in the first theorem.

Since -X~{x,-} EQi for all i, it follows that

r—1

r-Ul(í¡-l) = k*(Ax) û M0) = *•
i

And since, for j>0, each point of £; is a positive combination of

a proper subset of XC\Ej, it follows that

Ei © • • • ®Er C UAjr C U0

and

r Ú £ (ti - 1) = KAX) ̂  l(Q) è I,
i

We conclude, therefore, that r^min(k + l, /) and n^d + r^d+m.

Note that the inequality n^d+m is all that is required for the corol-

lary below.

Suppose now that n = d+m, whence r = m. If ¿r_i>2 then

k^k*(Q)^r = min(k + l, I), whence k = land l^l(Q)^r + l=l + l, a

contradiction. It follows that h= • • • =/r_i = 2. Furthermore,

tr^l + l-J2(ti- 1) = l + l- (m- 1) = 2 +11 - m.
i

Let s = tr — 2. Then O^s^l — m and

r

t0 = n — ^ ti = d + m — 2(m — 1) — (2 + s) = d — m — s.
i

Hence the invariant of X is
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(d — m — j,     2, • • • , 2,    2 + s)

im - 1    2'j)

or simply (d) if m = 0. Plainly |@| =d+m if Q is compatible with

such an invariant for some Og¡s^l — m, and that completes the

proof. □

Corollary (Robinsin). Suppose that E is d-dimensional and P

is a finite family of positive sets in E with [)PE{o} and k*iP)^k. Then

P admits a subfamily Q with 00E {o} and \q\ Sd+k + l.

Proof. Choose PoEP with dLiP0) Poúk and let S be a subfamily

of P~{Po} that is minimal with respect to having P0n(n>S)C {o}.

Let M= {Sr\P0: SES}. Then /(AT) ̂ k and M is minimal with re-

spect to having [)ME {o}, so it follows from the preceding theorem

that |M| ^d+k. But then | {P0}US| gd + jfe + l. D

Theorem. Let the hypotheses of the preceding theorem be strengthened

by requiring k*iQ) ^k. Then

(a) when m—d or k = l, \Q\ =d-\-m if and only if Q is compatible

with id — m;2,---,2)im 2's);

(b) when k = 0 and l = d, \Q\ =d-\-m if and only if Q is compatible

with (0; d+l);

(c) when m<d and 0<l — k<d, \q\ ^d-\-m — l=d + k, with equal-

ity if and only if Q is compatible with id — k; 2, ■ - - , 2) (k 2's) or

k=d — 2 and Q is compatible with (0; 2, • • • , 2) id — 1 2's).

Proof. If \Q\ =d-\-m then Q is compatible with

(d — m — s; 2, • • • , 2, 2 + s)

im - 1   2'5)

for some O^s^/ — m. There are the following cases to consider:

(i) m + s<d. Then k^k*iAx) = £í(í¿ — 1) =m + s, whence m^k,

k = l, and 5 = 0.

(ii) m=d and s=d — m = 0.

(iii) 1 = m and 5 = d — 1 >0. Then s^l — m implies I = d and k = 0.

(iv) Km<d and s = d — m is impossible, for it implies d = l and

k^k*iAx) =m— l+5=d — 1, whence m=d.

That settles the "only if" parts of (a) and (b), the first part of (c),

and supplies all the information needed for the corollary below. The

"if" parts of (a) and (b) are obvious.

For the remainder of the proof we assume m<d, 0<l — k<d, and

|q| =d-\-k. Note first that k^r^k + l, where the left-hand inequality
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follows from n^d+r and the right-hand inequality from

r

* ^ k*(Ax) lE(í¡-l)^f-l.
2

Now suppose first that ¿o>0. Then

* ^ k*(Ax) = £ (U - 1) ^ r + U - 2,
i

whence r — k and ¿< = 2 for all î>0. Hence X's invariant is (d — k;

2, ■ ■ ■ , 2) (k 2's). Suppose next that tB = 0 and r = k + \. Then

T

k ^ k*(Ax) = E (U - 1) £ i + tr - 2,
2

whence ¿¿ = 2 for all i>0 and d + k= Yf1ti = 2(k + Í). Hence k=d-2

and X has invariant (0; 2, • • • , 2) (¿ — 1 2's). Suppose, finally, that

<o = 0 and r = k. As ¿r_i>2 or tr>3 would imply

r

k ^ k*(Ax) ^((¡-1)^+1,
2

it follows that ¿i= • • ■ =/r_i = 2 and tr — 2+s with O^s^l. This

implies

r

d + k = E << = 2(* - 1) + 2 + j ^ 2* + 1
i

and hence k^d — 1, contradicting the fact that &</ and m<d. Thus

it cannot happen that £o = 0 and r = &, and the discussion of (c)'s

"only if" part is complete. Again, the "if" part is obvious. □

Corollary. Let the hypotheses of the preceding corollary be strength-

ened by requiring that k*(P) ^k and that 0<k<d — l or l(P)<d. Then

P admits a subfamily Q with D0C {o} and \q\ ^d+k.

Proof. Let 0 be a subfamily of P that is minimal with respect to

having (10C {o}. Apply the theorem just proved. □
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