
AN INVERSION THEOREM FOR HANKEL TRANSFORMS1
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It is a well-known fact of classical Fourier analysis that if / is a

function integrable on the real line and of bounded variation in a

neighborhood of x, then

JX /»  00
eiu*du I    f(y)e-iu"dy = (1/2) {/(x + 0) +f(x - 0)}.

Analogous results hold for other integral transforms. It is our in-

tention to study the behaviour of a similar inversion formula for the

Hankel transforms defined below.

Let i' be a fixed real number exceeding ( — 1/2) and let L consist of

all functions measurable on 0<x< °° such that

| f(x) | dm(x) < <x>
J 0

where

dm(x) = [2T(v + l)]-]x2"+'¿x.

Let

g{x) = 2'T(v + l)x-"J,(x),

where J, is the Bessel function of the first kind of order v. We are

interested in whether the following formula analogous to (1) holds

/' X p oo
g(xu)dm(u) j    f(y)g(uy)dm(y)

o J 0

= (l/2)i/(x + 0)+/(x-0)}.

Equation (2) does not hold under circumstances as general as those

for which (1) holds. What is needed is a restriction on the behaviour

of/ near 0; we shall prove the following theorem after a few remarks.

Theorem. Suppose f is in L and
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(3) f   \f(y)\y"+W2)dy < »,
J o

then if x > 0 and if f is of bounded variation in a neighborhood of x,

(2) holds.

Finally we will show by means of an example that the exponent

v + (1/2) in (3) cannot be increased.

We will need the following well-known properties of Bessel

functions

7„(x) = (2/wxy1^ cos(x - (l/2)p.ir - (1/4)tt) + 0(x-<3/2>)
(4)

as x —» oo,

in particular

(5) Jn(x) = 0(1/y/x)        as x—* oo(

(6) 7„(x) = 0(x") as x —> 0,

/J„(uy)Jp.(ux)udu
o

(7)
= X(x2 - yT^xJr+i^JrÇKy) - yJ,+i(\y)J,(\x)}

(see [5 p. 134]).

Proof of the Theorem. The integral in (2) can be written as a

sum of two integrals with y in the ranges (0, 5) and (5, oo) where

0<5<x. The proof of Hankel's theorem in [4, pp. 240-242] is easily

adapted to show

/l X /»oo

g(xu)dm(u)      f(y)S(uy)dm(y) = (1/2) {/(x + 0) + f(x - 0)} ;
o J t

condition (3) does not enter that argument. Thus it suffices to show

/' X r* Sg(xu)dm(u) I   f(y)S(uy)dm(y) = 0.
o J o

By Fubini's theorem and (7) this last integral is equal to

Xx1-"7,+1(Xx) I   f(y)(x2 - /ry+^Ay)^
J o

- Xx-"7„(Ax) f f(y)(x2 - ^-y+lT^XyjíTy.
•J 0

We will show that the first integral is o(l/\A) as X—♦<». The same
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methods serve to analyze the second integral and the theorem will

be proved.

From (6) we have

(l/X)
/> d/xj

/(y)(^-y2)-i/,(Xy)y'+i¿y
o

/> (l/X)
\f(y)\y"+ldy

0

/• (l/X) |/60|y+<l'2>dy = O(l/VX)
o

by (3). For y ^ (l/X) we use the asymptotic expansion (4). The cosine

term contributes

/ 2\ 0/2)    /»«

( — )        I       /(v)(x2 - y2)"1 cos(Xy - (l/2)w - (l/4)7r)y+<"2>á;y
\7tX/ J (l/X)

= o(l/V\)

by the classical Riemann-Lebesgue lemma. Finally the 0 term is

estimated in two parts:

UKX)
/(l/^X)

f(y)(x* - y2)-10((\y)-'3'2>)r+Iay
(l/X) I

JttMO
I /(y) I (Xy^y+wdy

(l/X)

/(l/VX) |/(y)|yH-amay = 0(i/vx)
ri/xi(l/X)

by (3); and

, 5

I /(j)02 - y*)-lO((\y)-<sm)y"+ldy

= 0(1/A) f | /(y) | (yVA)-y+(1/2)<7y = 0(1/X) = o(l/y/\)
J  (1/VX)

by (3).    Q.E.D.
We now give an example that shows that the exponent 1*4-(1/2)

in (3) cannot be increased. Let

f(y)  = y-(rH»/2)) 0 <y = l

= 0 y > 1
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and let x>l. Let

/i   X /»   00g(xu)dm(u) I    f(y)g(uy)dm(y).
o Jo

Thus (2) holds if and only if

7x —> 0        as X —> oo.

We will find a sequence Xi such that

X, —> oo        as î —» oo,

and such that for some positive constant C

\h,\  >C       (i= 1,2,3, •••).

Let Xi, x2, X3, • • •   be the positive real zeros of Jv(x) in ascending

order and let Xi = x,/x. Then by (7) and Fubini's theorem

i-, F1
7x, = X¡x    J,+i(x,) I

J a

7,(X,y)

(x2 - y^y1'2

dy,

x    Xj   Jv+i(Xi) I      -
Jo        \X2

J,(w)
dw.

o     [x2 - (wA.-)2]w1/2

It can be easily shown that

'Xi Jv(w)dw
im   |

/'Xi          Jv(w)dw r °°
-= x~2 I     Jv(w)w"ll2dw.

o     [x2 - (w/X,)2]™1'2            Jo

This last expression has the value

T((2v + l)/4)/21'2r((2^ + 3)/4)

(see [2, p. 22, formula (7)]).

From (4) it follows that

7,+i(x) = (2/7rx)1'2cos(x - ß - 0/2)) + 0(x-3'2)

= (2/rrxyi2 sin(x - ß) + 0(x~zl2)

where ß = (2v-|- 1)tt/4 and

/,(*) = (2/Trx)1'2 cos(x - ß) + 0(x-3'2).

Since Jr(Xi) =0, we see that

| J,+l(Xi) |    =  (TXi)-1'2

for i sufficiently large. Thus for some constant C we have
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1—»     1/2 i i
X Xi |   Jy+l(Xi)   I      ̂    C

and so

| hi |   = x'-'C.

Thus, it follows that ^ + (1/2) is indeed the largest exponent in (3)

for which the theorem holds.

Remark. Suppose v = (n — 2)/2 where n is an integer greater than

1, and suppose / is defined on Rn, Euclidean w-space. / is radial if

there is a function g defined on (0, °° ) such that

/(*) =«(|*|)

for almost all x in Rn. Then/ is integrable if and only if g is in 7;

furthermore [l, p. 69] fôg(y)â(uy) dm(u) is essentially the Fourier

transform of / at y for any point y such that |y | =u. Then our theo-

rem says that the multiple Fourier transform of / can be inverted

by spherical sums if /(x)|x|(n_1)/2 is integrable and our example

yields one of a function supported on |x| ^1 for which localization

fails to hold for the spherical sums.

The author wishes to express his deep thanks to Professors Rudin

and Askey of the University of Wisconsin.
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