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I. Introduction. In recent work by R. J. Easton [3], D. J. Uherka

[7], D. H. Tucker [3], [ó], [7], and S. G. Wayment [8], questions

dealing directly with the problem of extending a finitely additive

operator valued set function with finite semivariation defined on a

particular ring C of subsets of a compact Hausdorff space have been

studied. The present note lends considerable support to the choice

of this particular ring.

We consider a similar extension problem from a different view-

point. In particular, we suppose only that C is a ring of subsets of a

universal space T, each of E and F is a Banach space, B(E, F) is the

Banach space of all bounded linear operators /: E—+F, and m: C

—>B(E, F) is a finitely additive set function with finite semivariation.

That is, if AEC, we assume that sup|| 53»m(^4í)-Xí|| is finite, where

we take the supremum over all finite C-subdivisions {Ai} oí A and

all elements x¿ of unit norm in E. H(C) is the hereditary c-ring gen-

erated by C, i.e. H(C) is the tr-ring consisting of all subsets of T which

can be covered by countable unions from C. We use the semivariation

m of m to define an outer measure m* on H(C) in the obvious way,

and we let T(m) be the set of all elements A in H(C) so that if

BEH(C), then m*(B) =m*(BC\A)+m*(B-A). It is shown in

Chapter 12 of [5] and Chapter 1 of [l] that T(m) is a o--ring. C(m)

will be the largest class of subsets of T so that T(m) forms an ideal in

C(m), i.e. the intersection of each element of C(m) with any element

in T(m) lies in T(m). And 2(w) will be the 5-ring of all elements in

C(m) with finite p* measure (Definition 3).

The main results of this note appear in Theorem 1 and Theorem 3.

In Theorem 1 we show that vsr (Definition l) + (CET(m)) implies

that m= \m\. Furthermore, in case CET(m), we show that there is

a unique extension mi: 2(m)^>B(E, F) of m so that

(i) Wi has finite semivariation mi;

(ii) mi=p*;

(iii) mi = | mi\, the total variation of nti',

(iv) mi extends m.

Thus we are able to conclude that m and rhx are countably additive

on their domains. In Theorem 3 we show that essential one-dimen-
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sionality of the range of m is a necessary and sufficient condition for

m to be I m\. In addition an example is given in which m* does not

agree with m on C, even though CQT(m); and another example

shows that C may be a very rich ring and T(m) may be trivial.

Definition 1. We say that a finitely additive set function m: C

—>7J(E, F) is variationally semiregular at <p (vsr) provided that if

{An j is a decreasing sequence of sets in C whose intersection is empty

and m(AÎ) < oo, then lim„ m(An) =0. Halmos says that m is contin-

uous from above at (p.

Definition 2. Let C, m: C—>B(E, F), and 77(C) be as before. Let

AQH(C). Define m*(A) to be the inf 2râ(i„), where the infimum is

taken over all countable C-coverings of A. Clearly m* is an outer

measure on 77(C).

Definition 3. Let C, m: C^>B(E, F), 77(C), T(m), and C(m) be as

above. For AQC(m), define p*(A) to be sup m*(B), where the

supremum is taken over all BQT(m) such that BQA.

Example 1. Let E be the smallest ring containing the following

subsets of (0,1]: {{*}, (0, l], (|, l], (J, |], (i, *], • • • }. For eQE,
define K(e) to be 1 if e contains a set of the form (0, a]; otherwise,

define K(e) to be 0. It follows that K is additive on E. Certainly

77(E) is the power class P of (0, l]; furthermore, if AQH(E), then

m*(A)=0. Hence T(m) = P, and CQT(m). However, it is clear that

m((0, l]) = l, and thus m^m* on C. This example also shows that

the additivity of m need not imply countable subadditivity.

Example 2. Let C denote the power class of [0, l]. For AQC,

define m(A) to be XA, the characteristic function of A. We interpret

Xa as being in the Banach space E of all bounded functions on [0, l]

with the uniform norm, i.e. E = B(S, E), where 5 is the scalar field.

Then 77(C) = C, m(A) is 1 if A is nonempty, and m(<p) =0. Similarly,

m*(A) is 1 if A is nonempty, and m*(<f>)=0. Therefore T(m)

= {<p, [0, 1 ]}, which forces m* and p* to differ.

Lemma 1. Suppose that m: C—>B(E, F) is a finitely additive set

function with finite semivariation on C. Suppose furthermore that m is

vsr and m* is the outer measure on 77(C). Then m = m* on C.

Proof. It is clear in general that m*^m on C. Suppose then that

there is an A QCsuch that m*(A) <m(A). Thenm*(A)< o° and there

is an €>0 and a disjoint sequence {.4,,}»_i from C which covers A so

that m*(A)+t<m(A) and J^ñ-i m(An)-m*(A)<t/2. Let Bn

= Anf~\A for each positive integer «. Thus 2ñ°-i m(Bn) —m*(A) <t/2,

BnQC lor each n, andU„ Ba = A. Therefore m(A)> 23iT-i rh(Bn)+t/2.

Let c7t = Ui"t5j, and notice that for arbitrary k,
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k-X

m(A) g 2Zñt(Bi)+m(Uk).
i'=i

Hence it follows that m(Uk)>e/2 for each k. But UkEC, UkEA, and

m(A)< oo. Since fl* Uk = 0 and m is vsr, we have a contradiction.

Therefore we conclude that m* = m on C, and the lemma is proved.

For A, BE^(m), define p(A, B) to be p*(A AB). Then p defines a

semimetric on 2(w).

We include a proof of the following lemma since we do not assume

that m* is m, and the analogous fact for total variation (m*= \m\ )

is present in the form in which this result usually appears.

Lemma 2. If CET(m), then Cisp-dense in~Z(m).

Proof. Let i?£2(m) and choose e>0. Since p*(B) is finite, there

is an element A in the <r-ring generated by C so that AEB and

p*(B— A)<(. But AEH(C); hence, since p*(A) is finite, there is a

disjoint sequence |i?,} of elements from C covering A so that

p*(A)+t> Er«i m(Ri)- Therefore, p*(A)+t> ££, m*(Ri). Let M
he a positive integer so that if j^M and RU) =U¡=1 Ri, then

| £r_, m*(Ri)-m*(R^)\ <e. It follows thatp*(BARw)<o e, and
the lemma is proved.

II. Theorem 1. Let C, m: CAB(E, F), T(m), 2(m), C(m), H(C),
m*, and p* be as above, and consider the following conditions:

(a)  F isomorphically isometric to C;

(h) m=\m\ on C;
(c) m finitely additive in C;

(d) CET(m).
Then (a)<=*(b)«>(c)^(d).

If m is vsr, then the following conditions are equivalent:

(c) m is finitely additive on C;

(c1) m is countably additive on C;

(d) CET(m);
(e) CET(m) and there exists a unique extension mi: 2(m)—>B(.E, F)

of m such that mi satisfies conditions (i)-(iv) of the introduction.

Proof. Suppose that m is finitely additive on C. Let A EC and

suppose that {Ai, • • • , An} is a finite disjoint collection of sets in

C whose union is A. Then 2"-i ll"1^«')!! ̂ 2~l"=x ñt(A,) =m(A).
Therefore \m\(A)^m(A), but the reverse inequality is clear, and

m=\m\ on C.

Conversely, if w=|w|, then the additivity of \m\ on C implies

that m is additive on C. Therefore (b) and (c) are equivalent.
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The argument that finite additivity of m implies that CQ T(m) is

well known, e.g. see [2, Volume 1, p. 135]. The hypothesis that the

set function is countably additive is made, but finite additivity is all

that is needed.

Finally, that (a) implies (b) is clear.

For the remainder of the proof, we suppose that m is vsr. From

Lemma 1, we know that m* = m. Hence, if CQT(m), we conclude

that m is countably additive (and thus additive) on C. Conversely,

if m is additive on C, we have shown that CQT(m). Since m* is

countably additive on T(m), we conclude that m is countably addi-

tive on C. Hence (c), (c1), and (d) are shown to be equivalent.

Finally, let us suppose again that CQT(m). We recall that S(w)

is the collection of all sets in C(m) with finite ju*-measure; hence

CCS(w). Notice that p* agrees with m* on T(m), a situation that

did not exist in Example 2. From Lemma 2, we conclude that C is

p-dense in H,(m). For AQ1i(m), let j4„}^=1bea sequence of sets in

C so that limn p(An, A)=Q. Then \m(An)]^i defines a Cauchy se-

quence in B(E, F), and we define mi(A) to be lim m(An). Since m is

uniformly continuous with respect to p, it follows that Wi is well

defined, additive, extends m and has finite variation. Hence mi has

finite semivariation.

The last assertion is that p* = rhi on 1t(m). While the circumstances

are somewhat different, the techniques employed here will carry over

to that situation studied by Dinculeanu, providing a considerable

simplification of a part of the proof of Theorem 3, p. 76 of [l].

It is a short exercise to prove that mi^p*; thus it will suffice to

prove that p* = räi. Let AQ~Z(m) and suppose that e>0. Since C is

p-dense inS(w), there is a set BQCso thatp*(^4 — B)+p*(B — A)<t.

We remark that \p*(B) — m(B)\ <e. Without loss of generality,sup-

pose that mi(A) ^mi(B). Then m, (A)- mi (B) ¿thi(A C\B) + m (A -B)

— mi(B)^p(A, B)<e. Hence | ñii(A)— ñii(B)\ <t. Furthermore,

\p*(A)-m(B)\ <e, and thus p*(A) <ß*(B)+t^ini(B)+ t<m(A)
+ 2t. Therefore wii = p* on S(m), and it follows immediately that

mi is countably additive on S(w). Also, from an earlier part of the

proof, we conclude that »h=|oti| on 2(tw). That i»i = p* on 2(«z)

immediately implies that mi extends m.

It is easy to see that any extension of m with property (ii) of the

introduction is uniformly continuous with respect to p. Since C is

p-dense in 2(m), it follows by this uniform continuity that (ii) forces

uniqueness. The converse is clear since we have demonstrated one

such extension that satisfies (ii), and the theorem is proved.
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Corollary 1. (Notation established in Chapter 2 of [l].) If any of

the last four conditions of the theorem hold, U++m, Ui*-+mi, then \\ Ua\\

= \\\UA\\\for each A EC and \\ UiB\\ = \ \ \ Um\ \ \ for each BE?(m).

In fact, we can say more. The corollary is equivalent to any of the

last four conditions of the theorem.

Corollary 2. Suppose that m is vsr, TEC, m is additive on C, and

£ is the a-ring generated by C. Then there is a unique extension mi of m

to % so that rhi = m*.

A significant improvement in the theorem would be to reverse the

implication between (c) and (d) without requiring vsr. However, this

is not possible. Let E and K be as in Example 1. Let F=C(&C,

equipped with the norm \\(a, ß)\\ =max{ \a\, \ß\}- Define m: E—+F

= B(S, F) in the following way: if \Ee, define m(e) to be (K(e),%);

if | is not in e, define m(e) to be (K(e), 0). Then m is additive on E

and has finite semivariation. Furthermore, CET(m). However, m is

not additive. For clearly A = (0, J]E£, m(A) = 1, m((0, J]) = l, and

*((*, *])-!.
In view of an example given by D. H. Tucker [6] in which the

semivariation of the entire space is finite but the total variation of

any nontrivial interval of the ring under consideration is infinite, this

theorem and the accompanying examples show that in general the

construction found in most classical books does not carry over fruit-

fully to the semivariation setting.

Theorem 2. Suppose that CET(m). Then the following conditions

are equivalent:

(a) m is vsr;

(h) \\m(A)\\^m*(A) for each AEC;
(c) m is countably additive on C;

(d) m = m* on C.

Proof. The plan of attack is to show that (a)=>(b)=>(c)=>(d)=>(a).

That (a)=>(b) is clear since from Lemma 1 we know that m = m* on

C, and certainly ||w(^4) | ^m(A) for each A EC. Now (b) implies that

\m\ ¿m*, but m^\m ^m* and m* is countably additive on C.

Therefore m must also be countably additive. It follows immediately

that (c)=>(d). For the countable additivity of m implies that m is

outer regular on C, and by Lemma 1 we see that m = m*. The final

implication is also clear. Since m = m* and m* is outer regular (for

example, see [S, p. 51 ]), it follows that m is outer regular—a condition

that implies vsr.
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Perhaps it should be stated explicitly that under the equivalent

conditions of this theorem, we have that m* = m=\m\ on C.

The preceding remarks are somewhat suggestive of the scalar case.

This connection will be made clearer in Theorem 3. But first we make

some additional observations related to the preceding theorems and

examples.

1. If m: C—>B(E, F) has finite semivariation and is vsr, then m is

outer regular.

2. Suppose that m: C—>B(E, F) has finite semivariation, m is vsr,

and CQT(m). If U: ME(C)-^F is in correspondence with m, then

there is a unique extension Ui'. J7jî(2(ra))—»F of U so that || ^(5)11

^p*(B) for each BQ~L(m). Furthermore, if there is only one extension

Ui of U, then || Ui(B)\\ ̂ p*(B) lor BQ2(m).
3. It follows from Example 1 that the density of C in 2(»z) does

not imply that m is continuous with respect to p. Hence this extension

process cannot be carried out in general.

4. Example 2 shows that the norm of m being bounded by m* does

not imply that CQT(m).

Now suppose that A Q C and let 2l¿ denote the class of all C-sub-

divisions a: [Ai, • ■ • , An\ of A. Then 2í¿ forms a directed family

via the following direction: if a, ßQnl, then a^ß iff a refines ß. For

«G21a. define m(a) to be J3« [|w(^4,)||. For a fixed AQC and wQF*,
we view m(A)* w as an element in 72*, i.e. if xQE, m(A) carries x

into F and in turn w carries m(A)-x into the scalar field. And we de-

fine mw(A) to be m(A)*w. Therefore mw will simply denote the total

variation of the operator mw.

Theorem 3. Let m denote the semivariation and \m\ the total varia-

tion of m: C^B(E, F). If AQC, then m(A) = \m\ (A) iff (*) there
exists an öGSIa and a wQF*(\\w\\ gl) so that if ßQ%A and ß=a, then

the norms of the components of the sum m(ß) are (approximately) singly

generated by w, i.e. ß^a=$m(ß) and ^2ß \\m(Ai)*w\\ =mw(ß) are close.

Proof. In order to simplify the notation, we suppose that | m\ (A)

< ». The context makes it clear how to proceed otherwise. Suppose

that (*) is true. If e>0, then there is a o-Q%cA (o^a) so that if ßuo,

then | miß) — \ m\ (A)\ <t. Choose one such ß. Then \m\(A)<mw(ß)

+2e^mw(A)+2t. Thus

| m [ (A) ^      sup     mw(A) => | m \ (A) = m(A).
weF*;\lw\',£l

Conversely, suppose that \m\ (A) =m(A). Then there is a wQF*,

\\w\\ g 1, so that | \m\ (A) — mw(A)\ <t. Hence there isa a Q 3l¿ so that
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ii ß^cr, then \miß) — \m\ (A)\ <« and \mw(A)— mw(ß)\ <e, and the

theorem is proved.
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