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Let T be a bounded linear operator on a Banach space X. A sub-

set of the spectrum of T which is invariant under certain compact

perturbation of T is studied. It consists of the spectrum of T with

finite-dimensional poles deleted. In the case of a bounded operator,

it coincides with the essential spectrum as defined by F. E. Browder

[l]. It is characterized as a set considered by Caradus [2]. A formula

of the spectral radius type is proved. Furthermore, a spectral map-

ping theorem is valid.

The notation is that of Taylor [5]. Let R(T) denote the range of T

and N(T) the nullspace of T, i.e., N(T) = {x: Tx = 0}. The dimension

of N(T), n(T), is called the nullity of T and the codimension of R(T),

d(T), the defect of T. Suppose for some integer k, N(Tk) =N(Tk+1) ;

then the ascent, a(T), is defined as the smallest value of k for which

this is true. The smallest integer for which R(TK) =R(TK+1) is

called the descent of T and is denoted by b(T). For the operator

X — T, nÇK — T) is abbreviated to w(X), etc. B(X) will denote the

bounded linear operators, C(X) the compact linear operators. AA.B

means AB=BA =0. Let [T]EB(X)/C(X); then o([T]) denotes the

spectrum of [T] as an element of that Banach algebra. For a linear

operator T, letP(T) = {CEC(X): T-CLC} and Q(T) = {DEC(X):
DT= TD}. The object of this paper is to study the sets

<rp(T) =      D     <r(T — C), 0-Q.v) =      fi     <r(T — D).
CeP(T) DeQCT)

The complement of opw) will be denoted by pp(T), and the comple-

ment of o-Qcn will be denoted by pcht)- When no confusion will arise,

the T will be suppressed.

Lemma 1. up is a closed set, and ff([T])Qo-pQa(T).

Proof. o> is closed because it is the intersection of closed sets.

Since OEP, then o-pÇZo-(T-0) =o(T).

Let \Epp", then there is a CEP such that \Ep(T—C). Thus,

i?x(X — T+Q=I, where R\ = (X — T+C)-1, the resolvent operator.

Then [iix][X-r] = [X-r][i2x] = [7]. This implies that X£p([r]),
and ppÇP([r]). Hence, cr([T])QoP.
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Lemma 2. Let TQB(X). Suppose Xot^O is an isolated point of a(T).

Let Eo be the spectral projection associated with X0. Then T— TE0 A-TE0

and\oQo(T-TE0).

Proof. The operational calculus for T (see [4]) implies that

TE0 = E0T and (7 — Eo)E0 = Eo(I — E0) =0. These statements give

T-TE0A.TE0.

Let/(X)=X on a neighborhood of o-(r)~{X0} and/(X)=0 on a

neighborhood of {X„}. Then fÇ%»(T), and f(T) = T-TE0. The
spectral mapping theorem implies \oQo~(T—TEo).

Theorem 1. (a) ppm'~{o} = {X:«(X)=d(X) and 5(X)=a(X)}
~{0};

(b)po(T)= {X:»(X)=d(X) and 5(X) = a(X)}.

Proof. Let XGpq; then there is a 7>G<2 such that \Qp(T—D).

We can writeX- F= (X- (T-D)) + (-D). Let [/ = X- (F-7>). Then

Z7 has the properties that it has a bounded inverse, (K—T) — U is

compact, and (K — T)U= U(K — T) (since TD=DT). Thus, Theorem

6.3 of Yood [ó] implies that w(X) = d(X) and a(X) =S(X). Also, ppQpç.

Let XG(r(r) such that w(X)=d(X) and a(X)=5(X). Now Theorem

9.4 of Taylor [5] shows that X is an isolated point of o(T). Then by

Corollary 9.3 of Taylor [5], we conclude that 7£\, the associated

spectral projection, is a finite-dimensional operator. Thus, TE\ is

compact. If X^O, then Lemma 2 implies T—TE\JlTE\ and

\Qcr(T—TE\). H nee X£pp~{o}. Thus we have proved (a).

To prove (b), it suffices from the above to consider X = 0. For uj¿0,

Tl¡=p—T has a finite-dimensional pole at p, and the associated spec-

tral projection £„ = £0, by Theorem 5.71D of Taylor [4]. By Lemma

2, pQ<t(T,-T,Eo). Hence ^-(^-^j-^tr+W)-' exists,
and —TßE0QQ. This proves (b).

Caradus [2] defined the Riesz region, 9tT, of T to be {X:aOX) and

ô(X) are finite} ; the Fredholm region, gr, to be {X:«(X) and d(\) are

finite}.

Corollary 1. p0(D = 9îrngy Hence yiTC\%T is open.

Proof. Theorem 6.1 of Yood [ó] or Lemma 2 of Caradus [2] imply

that

$rn gr = {n(\) = d(\) and a(\) = ô(\)}.

Theorem 1 completes the proof.

Corollary 2. \Qo-q(T) if and only if either X is a limit point of
<r(T), or \ is an isolated point whose associated spectral projection is

infinite dimensional.
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Proof. Theorem 1, and Theorem 9.3 and Corollary 9.3 of Taylor

[5], imply that the points of pqÍ^o(T) are isolated points whose spec-

tral projections are finite-dimensional operators.

Let r = sup |X| for \Qo~p(T). Then the following spectral radius

type theorem is valid.

Theorem 2.

r = lim{ inf ||F" -C||}1/n.
n       CeP

Proof. Since T—CÁ.C, we have by induction (T— C)n= Tn — C".

Let r(A) he the spectral radius of AQB(X). It is well known that

r(An) = (r(A))n and \\An\\ ̂  (r(A))n. Hence, for CQP

For each «,

|(F- C)"|| ^ (r(T - C))" = r».

{ inf ||rB-C"||}1/Bè r.
CSP

Let a>r. Pick p such that a>p>r. Then if |X| >p, we have

«(X)=d(X)anda(X)=5(X). If Xe<r(F) and |X| >p, then Theorem 9.4
of Taylor [5] implies thatX is an isolated point of o-(T), and Corollary

9.3 of Taylor [5] that the associated spectral projection is a finite

dimensional operator.

There can only be a finite number of such points \Qo(T) and

|X| >p (for Theorem 9.4 of Taylor [5] would imply that a limit

point of such points would be isolated). Denote these points by {X,}".

Let Ei he the finite-dimensional projection associated with X,. Then

the operational calculus for T gives C=T( Yl"Ei)QP> and the spec-

tral mapping theorem that \iQo(T—C) for i = l, • • • , w. Hence,

P^r(T-C).
Thus, by the spectral radius theorem there is an N such that

a>||(F-C)B

\\(T-C)"\\^

i'-^r    for    n^N.    Thus    an>||(F-C)B|| ^rB.    But

F"-CB||=infC6P ||rB-CB||. Hence,

a" > inf ||rn-CB|| = r",    or    a > { inf ||FB - CB|| }1/n è r,
CeP CSP

which completes the proof.

The norm in the Banach algebra B(X)/C(X) is given by K(T)

= infc ||F— C|| where CQC(X). The next theorem shows the spectral

radius of an element of B(X)/C(X) is r.
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Theorem 3. For any TEB(X),

r =   lim  [K(Tnj]lln.
B-*oo

Proof. Let s = limn^x [K(Tn)]lln. Then s is the spectral radius of

the element [T] in B(X)/C(X). Since Cr={X:|X| >s} is an open

connected set, Theorem 3.3 and its corollary of Gohberg and Krein

[3] imply that a(T)HG consists of isolated points of o(T) such that

w(X) < 00. Hence, Corollary 9.3 of Taylor [5] implies that the spectral

projections associated with each of these is finite dimensional. Let /

be arbitrary and l>s. Then there are only a finite number of points

X£o-(7) and |X| ^l. Let a denote the spectral set consisting of these

points. Let E, be the spectral projection associated with cr. Then, as

before, T—TE, has spectrum inside the circle |X| =1. TE, is a finite

dimensional operator. Thus l>r. Lemma 1 implies that r^s. Hence

r = s.

The operational calculus of an operator T allows one to assign an

operator/(T) for every function/ analytic on a neighborhood of a(T)

(see Taylor [4]). The following type of "spectral mapping" theorem

is valid.

Theorem 4. Letf be analytic on an open set containing cr(T). Suppose

for each\o that {X:/(X) =/(X0)} is finite. Then /(o-q(7)) =o-Q(f(T)).

Proof. Suppose~hoE<r<i(T). Since the spectral mapping theorem im-

plies that f(cr(T)) =o-(/(7)),/(X0) is either a limit point of a(f(T)) or an

isolated point. If /(X0) is a limit point, Corollary 2 implies that

/(Xo)£o-q(/(7)). If/(Xo) is isolated, then Theorem 5.71D of Taylor

[4] implies that a= {X|/(X) =/(X0) }Ha(T) is a finite spectral set of

T, and the spectral projection associated with a and T, E,(T), equals

that associated with/(X0) and 7}(x0)(/(r)), i.e. E,(T) = Ff(\o)(f(T)).

Since a is a finite spectral set, this implies that Xo is an isolated point.

Corollary 2 implies that 7£x0 is infinite dimensional. Hence 7)(x0) is

infinite dimensional. Thus/(X0)£cro(f(r)), or f(oo.(T))Eo-c¡(f(T)).

Suppose that p.EoQ.(f(T)). If m is a limit point of o(f(T)), then

since f(o~(T)) =cr(f(T)), there is a limit point X of a(T) such that

/(X)=ju. Corollary 2 implies that \Eo~q(T). If p. is isolated, then, as

before, cr= {X|/(X) =p}Hcr(T) is a nonempty finite spectral set such

that EC(T) = Fß(f(T)). Since points of <r are isolated, E, is the finite

sum of the spectral projections associated with the points of a. Since

Fß is infinite dimensional, one of these projections must be infinite

dimensional. Thus there is a X£o* such that/(X)=/u and X£oe(r).

Thus,/(0-0(r))=o-Q(f(r)).
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Remark. The above theorems hold if P(T) and Q(T) are replaced

with finite-dimensional operators that satisfy the defining conditions

for these sets.
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