THE SPECTRUM OF A LINEAR OPERATOR UNDER PERTURBATION BY CERTAIN COMPACT OPERATORS

KENNETH K. WARNER

Let T be a bounded linear operator on a Banach space X. A subset of the spectrum of T which is invariant under certain compact perturbation of T is studied. It consists of the spectrum of T with finite-dimensional poles deleted. In the case of a bounded operator, it coincides with the essential spectrum as defined by F. E. Browder [1]. It is characterized as a set considered by Caradus [2]. A formula of the spectral radius type is proved. Furthermore, a spectral mapping theorem is valid.

The notation is that of Taylor [5]. Let R(T) denote the range of Tand N(T) the nullspace of T, i.e., $N(T) = \{x: Tx = 0\}$. The dimension of N(T), n(T), is called the nullity of T and the codimension of R(T), d(T), the defect of T. Suppose for some integer k, $N(T^k) = N(T^{k+1})$; then the ascent, $\alpha(T)$, is defined as the smallest value of k for which this is true. The smallest integer for which $R(T^K) = R(T^{K+1})$ is called the descent of T and is denoted by $\delta(T)$. For the operator $\lambda - T$, $n(\lambda - T)$ is abbreviated to $n(\lambda)$, etc. B(X) will denote the bounded linear operators, C(X) the compact linear operators. $A \perp B$ means AB = BA = 0. Let $[T] \in B(X)/C(X)$; then $\sigma([T])$ denotes the spectrum of [T] as an element of that Banach algebra. For a linear operator T, let $P(T) = \{C \in C(X): T - C \perp C\}$ and $Q(T) = \{D \in C(X):$ $DT = TD\}$. The object of this paper is to study the sets

$$\sigma_{P(T)} = \bigcap_{C \in P(T)} \sigma(T-C), \qquad \sigma_{Q(T)} = \bigcap_{D \in Q(T)} \sigma(T-D).$$

The complement of $\sigma_{P(T)}$ will be denoted by $\rho_{P(T)}$, and the complement of $\sigma_{Q(T)}$ will be denoted by $\rho_{Q(T)}$. When no confusion will arise, the T will be suppressed.

LEMMA 1. σ_P is a closed set, and $\sigma([T]) \subseteq \sigma_P \subseteq \sigma(T)$.

PROOF. σ_P is closed because it is the intersection of closed sets. Since $0 \in P$, then $\sigma_P \subseteq \sigma(T-0) = \sigma(T)$.

Let $\lambda \in \rho_P$; then there is a $C \in P$ such that $\lambda \in \rho(T-C)$. Thus, $R_{\lambda}(\lambda - T + C) = I$, where $R_{\lambda} = (\lambda - T + C)^{-1}$, the resolvent operator. Then $[R_{\lambda}][\lambda - T] = [\lambda - T][R_{\lambda}] = [I]$. This implies that $\lambda \in \rho([T])$, and $\rho_P \subseteq P([T])$. Hence, $\sigma([T]) \subseteq \sigma_P$.

Received by the editors March 28, 1967 and, in revised form, November 14, 1968.

LEMMA 2. Let $T \in B(X)$. Suppose $\lambda_0 \neq 0$ is an isolated point of $\sigma(T)$. Let E_0 be the spectral projection associated with λ_0 . Then $T - TE_0 \perp TE_0$ and $\lambda_0 \notin \sigma(T - TE_0)$.

PROOF. The operational calculus for T (see [4]) implies that $TE_0 = E_0T$ and $(I - E_0)E_0 = E_0(I - E_0) = 0$. These statements give $T - TE_0 \perp TE_0$.

Let $f(\lambda) = \lambda$ on a neighborhood of $\sigma(T) \sim \{\lambda_0\}$ and $f(\lambda) = 0$ on a neighborhood of $\{\lambda_0\}$. Then $f \in \mathfrak{A}_{\infty}(T)$, and $f(T) = T - TE_0$. The spectral mapping theorem implies $\lambda_0 \notin \sigma(T - TE_0)$.

THEOREM 1. (a) $\rho_{P(T)} \sim \{0\} = \{\lambda : n(\lambda) = d(\lambda) \text{ and } \delta(\lambda) = \alpha(\lambda)\}$ $\sim \{0\};$

(b)
$$\rho_{Q(T)} = \{\lambda : n(\lambda) = d(\lambda) \text{ and } \delta(\lambda) = \alpha(\lambda) \}.$$

PROOF. Let $\lambda \in \rho_Q$; then there is a $D \in Q$ such that $\lambda \in \rho(T-D)$. We can write $\lambda - T = (\lambda - (T-D)) + (-D)$. Let $U = \lambda - (T-D)$. Then U has the properties that it has a bounded inverse, $(\lambda - T) - U$ is compact, and $(\lambda - T)U = U(\lambda - T)$ (since TD = DT). Thus, Theorem 6.3 of Yood [6] implies that $n(\lambda) = d(\lambda)$ and $\alpha(\lambda) = \delta(\lambda)$. Also, $\rho_P \subset \rho_Q$.

Let $\lambda \in \sigma(T)$ such that $n(\lambda) = d(\lambda)$ and $\alpha(\lambda) = \delta(\lambda)$. Now Theorem 9.4 of Taylor [5] shows that λ is an isolated point of $\sigma(T)$. Then by Corollary 9.3 of Taylor [5], we conclude that E_{λ} , the associated spectral projection, is a finite-dimensional operator. Thus, TE_{λ} is compact. If $\lambda \neq 0$, then Lemma 2 implies $T - TE_{\lambda} \perp TE_{\lambda}$ and $\lambda \notin \sigma(T - TE_{\lambda})$. H nce $\lambda \in \rho_{F} \sim \{0\}$. Thus we have proved (a).

To prove (b), it suffices from the above to consider $\lambda = 0$. For $\mu \neq 0$, $T_{\mu} = \mu - T$ has a finite-dimensional pole at μ , and the associated spectral projection $E_{\mu} = E_0$, by Theorem 5.71D of Taylor [4]. By Lemma 2, $\mu \oplus \sigma(T_{\mu} - T_{\mu}E_0)$. Hence $(\mu - (T_{\mu} - T_{\mu}E_0))^{-1} = (T + T_{\mu}E_0)^{-1}$ exists, and $-T_{\mu}E_0 \in Q$. This proves (b).

Caradus [2] defined the Riesz region, \Re_T , of T to be $\{\lambda:\alpha(\lambda) \text{ and } \delta(\lambda) \text{ are finite}\}$; the Fredholm region, \mathfrak{F}_T , to be $\{\lambda:n(\lambda) \text{ and } d(\lambda) \text{ are finite}\}$.

COROLLARY 1. $\rho_{Q(T)} = \Re_T \cap \mathfrak{F}_T$. Hence $\Re_T \cap \mathfrak{F}_T$ is open.

PROOF. Theorem 6.1 of Yood [6] or Lemma 2 of Caradus [2] imply that

$$\Re_T \cap \mathfrak{F}_T = \{n(\lambda) = d(\lambda) \text{ and } \alpha(\lambda) = \delta(\lambda)\}.$$

Theorem 1 completes the proof.

COROLLARY 2. $\lambda \in \sigma_Q(T)$ if and only if either λ is a limit point of $\sigma(T)$, or λ is an isolated point whose associated spectral projection is infinite dimensional.

PROOF. Theorem 1, and Theorem 9.3 and Corollary 9.3 of Taylor [5], imply that the points of $\rho_Q \cap \sigma(T)$ are isolated points whose spectral projections are finite-dimensional operators.

Let $r = \sup |\lambda|$ for $\lambda \in \sigma_P(T)$. Then the following spectral radius type theorem is valid.

THEOREM 2.

$$r = \lim_{n} \{ \inf_{C \in P} ||T^{n} - C^{n}|| \}^{1/n}.$$

PROOF. Since $T-C \perp C$, we have by induction $(T-C)^n = T^n - C^n$. Let r(A) be the spectral radius of $A \in B(X)$. It is well known that $r(A^n) = (r(A))^n$ and $||A^n|| \ge (r(A))^n$. Hence, for $C \in P$

$$\left\| (T-C)^n \right\| \ge (r(T-C))^n \ge r^n.$$

For each n,

$$\left\{ \inf_{C \in P} \left\| T^n - C^n \right\| \right\}^{1/n} \ge r.$$

Let a > r. Pick p such that a > p > r. Then if $|\lambda| > p$, we have $n(\lambda) = d(\lambda)$ and $\alpha(\lambda) = \delta(\lambda)$. If $\lambda \in \sigma(T)$ and $|\lambda| > p$, then Theorem 9.4 of Taylor [5] implies that λ is an isolated point of $\sigma(T)$, and Corollary 9.3 of Taylor [5] that the associated spectral projection is a finite dimensional operator.

There can only be a finite number of such points $\lambda \in \sigma(T)$ and $|\lambda| > p$ (for Theorem 9.4 of Taylor [5] would imply that a limit point of such points would be isolated). Denote these points by $\{\lambda_i\}_{i=1}^{n}$. Let E_i be the finite-dimensional projection associated with λ_i . Then the operational calculus for T gives $C = T(\sum_{i=1}^{n} E_i) \in P$, and the spectral mapping theorem that $\lambda_i \oplus \sigma(T-C)$ for $i=1, \dots, n$. Hence, $p \ge r(T-C)$.

Thus, by the spectral radius theorem there is an N such that $a > ||(T-C)^n||^{1/n} \ge r$ for $n \ge N$. Thus $a^n > ||(T-C)^n|| \ge r^n$. But $||(T-C)^n|| \ge ||T^n - C^n|| \ge \inf_{\sigma \in P} ||T^n - C^n||$. Hence,

$$a^n > \inf_{C \in P} ||T^n - C^n|| \ge r^n$$
, or $a > \{ \inf_{C \in P} ||T^n - C^n|| \}^{1/n} \ge r$,

which completes the proof.

The norm in the Banach algebra B(X)/C(X) is given by $K(T) = \inf_{C} ||T-C||$ where $C \in C(X)$. The next theorem shows the spectral radius of an element of B(X)/C(X) is r.

1969]

[September

THEOREM 3. For any $T \in B(X)$,

$$r = \lim_{n \to \infty} [K(T^n)]^{1/n}.$$

PROOF. Let $s = \lim_{n \to \infty} [K(T^n)]^{1/n}$. Then s is the spectral radius of the element [T] in B(X)/C(X). Since $G = \{\lambda: |\lambda| > s\}$ is an open connected set, Theorem 3.3 and its corollary of Gohberg and Krein **[3]** imply that $\sigma(T) \cap G$ consists of isolated points of $\sigma(T)$ such that $n(\lambda) < \infty$. Hence, Corollary 9.3 of Taylor **[5]** implies that the spectral projections associated with each of these is finite dimensional. Let lbe arbitrary and l > s. Then there are only a finite number of points $\lambda \in \sigma(T)$ and $|\lambda| \ge l$. Let σ denote the spectral set consisting of these points. Let E_{σ} be the spectral projection associated with σ . Then, as before, $T - TE_{\sigma}$ has spectrum inside the circle $|\lambda| = l$. TE_{σ} is a finite dimensional operator. Thus l > r. Lemma 1 implies that $r \ge s$. Hence r = s.

The operational calculus of an operator T allows one to assign an operator f(T) for every function f analytic on a neighborhood of $\sigma(T)$ (see Taylor [4]). The following type of "spectral mapping" theorem is valid.

THEOREM 4. Let f be analytic on an open set containing $\sigma(T)$. Suppose for each λ_0 that $\{\lambda:f(\lambda)=f(\lambda_0)\}$ is finite. Then $f(\sigma_Q(T))=\sigma_Q(f(T))$.

PROOF. Suppose $\lambda_0 \in \sigma_Q(T)$. Since the spectral mapping theorem implies that $f(\sigma(T)) = \sigma(f(T)), f(\lambda_0)$ is either a limit point of $\sigma(f(T))$ or an isolated point. If $f(\lambda_0)$ is a limit point, Corollary 2 implies that $f(\lambda_0) \in \sigma_Q(f(T))$. If $f(\lambda_0)$ is isolated, then Theorem 5.71D of Taylor [4] implies that $\sigma = \{\lambda | f(\lambda) = f(\lambda_0) \} \cap \sigma(T)$ is a finite spectral set of T, and the spectral projection associated with σ and T, $E_{\sigma}(T)$, equals that associated with $f(\lambda_0)$ and $F_{f(\lambda_0)}(f(T))$, i.e. $E_{\sigma}(T) = F_{f(\lambda_0)}(f(T))$. Since σ is a finite spectral set, this implies that λ_0 is an isolated point. Corollary 2 implies that E_{λ_0} is infinite dimensional. Hence $F_{f(\lambda_0)}$ is infinite dimensional. Thus $f(\lambda_0) \in \sigma_Q(f(T))$, or $f(\sigma_Q(T)) \subset \sigma_Q(f(T))$.

Suppose that $\mu \in \sigma_Q(f(T))$. If μ is a limit point of $\sigma(f(T))$, then since $f(\sigma(T)) = \sigma(f(T))$, there is a limit point λ of $\sigma(T)$ such that $f(\lambda) = \mu$. Corollary 2 implies that $\lambda \in \sigma_Q(T)$. If μ is isolated, then, as before, $\sigma = \{\lambda \mid f(\lambda) = \mu\} \cap \sigma(T)$ is a nonempty finite spectral set such that $E_{\sigma}(T) = F_{\mu}(f(T))$. Since points of σ are isolated, E_{σ} is the finite sum of the spectral projections associated with the points of σ . Since F_{μ} is infinite dimensional, one of these projections must be infinite dimensional. Thus there is a $\lambda \in \sigma$ such that $f(\lambda) = \mu$ and $\lambda \in \sigma_Q(T)$. Thus, $f(\sigma_Q(T)) = \sigma_Q(f(T))$.

670

REMARK. The above theorems hold if P(T) and Q(T) are replaced with finite-dimensional operators that satisfy the defining conditions for these sets.

References

1. F. E. Browder, On the spectral theory of elliptical differential operators, I, Math. Ann. 142 (1960/61), 22-130.

2. S. R. Caradus, Operators with finite ascent and descent, Pacific J. Math. 18, no. 3, (1966), 437-449.

3. I. C. Gohberg, and M. G. Krein, *The basic propositions on defect numbers, root numbers, and indices of linear operators, Amer. Math. Soc. Transl.* (2) **13** (1960), 185–264.

4. Angus E. Taylor, Introduction to functional analysis, Wiley, New York, 1958.

5. ——, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18-49.

6. Bertram Yood, Properties of linear transformations preserved under addition of a completely continuous transformation, Duke Math. J. 18 (1951), 599-612.

CALIFORNIA STATE COLLEGE, LONG BEACH

1969]