APPLICATIONS OF ϵ-ENTROPY TO THE COMPUTATION OF n-WIDTHS

J. W. JEROME AND L. L. SCHUMAKER ${ }^{1}$

1. The concepts of ϵ-entropy and n-width of compact sets in Banach spaces play an important role in approximation theory (see [1], [2], [3] and references therein). The entropy and widths of many compact classes of smooth and analytic functions in various well-known function spaces have been computed.

It is known that entropy and n-width are related to each other, e.g., by certain integral inequalities (see [3, p. 164]). There is every reason to believe, however, that in general the behavior of one quantity does not determine in a sharp way the behavior of the other.

The purpose of this paper is to show how the implicit relationship between n-width and entropy inherent in certain negative Vituškin type results for nonlinear approximation can be utilized to compute n-widths of some classes of smooth functions. As examples we shall compute the n-widths for the following classes. Let S be an s dimensional parallelopiped, and let ω be a monotone increasing subadditive function which vanishes at zero. We define $\Lambda_{r \omega}^{s}$ in $C(S)$ and $\Lambda_{r \alpha}^{s p}$ in $L^{p}(S), 1 \leqq p<\infty$, as

$$
\begin{gather*}
\Lambda_{r \omega}^{s}=\Lambda_{r \omega}^{s}\left(M_{0}, \cdots, M_{r+1}, S\right)=\left\{f: f \in C^{r}(S),\left\|D^{j} f\right\|_{\infty} \leqq M_{j},\right. \tag{1.1}\\
\left.0 \leqq j \leqq r, \quad \text { and } \omega\left(D^{r} f ; t\right) \leqq M_{r+1} \omega(t)\right\} \\
\Lambda_{r \alpha}^{s p}=\Lambda_{r \alpha}^{s p}\left(M_{0}, \cdots, M_{r+1}, S\right)=\left\{f: f \in C^{r}(S),\left\|D^{j} f\right\|_{p} \leqq M_{j},\right. \\
\left.0 \leqq j \leqq r, \quad \text { and } \omega\left(D^{r} f ; t\right) \leqq M_{r+1} t^{\alpha}\right\}, \quad 0<\alpha \leqq 1, \tag{1.2}
\end{gather*}
$$

where $\omega\left(D^{r} f ; t\right)$ denotes the modulus of continuity of $D^{r} f$ and $D^{j f}$ denotes an arbitrary partial derivative of f of order j.
The n-widths of $\Lambda_{r \omega}^{s}$ have been computed elsewhere (cf. [3]) by other means, but the results for $\Lambda_{r \alpha}^{s p}$ are new.
2. Vituškin-type results. In this section we will state, after some initial definitions, theorems due to Vituškin and Lorentz which say in effect that if the n-width of a class is known to be less than ϵ, then n must be at least as large as the ϵ-entropy of that class. These theorems will later be exploited to obtain lower bounds for n-widths.

[^0]By the n-width, $d_{n}(A)$, of a set A in a Banach space X we mean the number

$$
d_{n}(A)=\inf _{\operatorname{dim} \mathfrak{M}=n} \sup _{f \in A} \inf \|f-g\|
$$

where $\mathfrak{M} \subset \mathfrak{X}$, and by the ϵ-entropy $H_{\epsilon}(B)$ in \mathscr{X} we mean the logarithm of the minimum number of sets of diameter $\leqq 2 \epsilon$ whose union contains B. Finally, $\lambda(\epsilon) \approx \mu(\epsilon)$ (weak asymptotic equivalence) is to mean that $\lambda=O(\mu)$ and $\mu=O(\lambda)$ as $\epsilon \rightarrow 0$.

We state first the theorem of Vituškin [1, Theorem 12, p. 928] which, though in its original form deals with nonlinear approximation, is here specialized to the case of linear approximation of the class $\Lambda_{r \omega}^{s}$.

Theorem 2.1 (Vituškin). Consider the class $\Lambda_{r \omega}^{s} \subset C(S)$. If $d_{n}\left(\Lambda_{r \omega}^{s}\right)$ < ϵ then

$$
\begin{equation*}
n \geqq c_{1} H_{\epsilon}\left(\Lambda_{r \omega}^{s}\right) \tag{2.1}
\end{equation*}
$$

Lorentz [1, Theorem 6, p. 915] has proved analogous results for arbitrary separable Banach spaces:

Theorem 2.2 (Lorentz). Let A be an arbitrary compact set in a separable Banach space \mathfrak{X} and let $d_{n}(A)<\epsilon$. If $\forall q, 0<q<1, \exists c_{1}>0$ $\ni H_{c_{1}}(A) \leqq q H_{\epsilon}(A)$, then

$$
\begin{equation*}
n \geqq c_{1} H_{c^{2} \epsilon}(A)-c_{2} \tag{2.2}
\end{equation*}
$$

Notice that for sufficiently small ϵ (i.e. sufficiently large n) (2.2) may be rewritten as

$$
\begin{equation*}
n \geqq c_{3} H_{e^{2} \epsilon}(A) \tag{2.3}
\end{equation*}
$$

3. n-widths of $\Lambda_{r \omega}^{s}$. In this section we illustrate our method by obtaining the following

Theorem 3.1 (cf. [3, p. 135]). The n-width of the class $\Lambda_{r \omega}^{s} \subset C(S)$ is given by

$$
d_{n}\left(\Lambda_{r \omega}^{s}\right) \approx n^{-r / s} \omega\left(n^{-1 / s}\right)
$$

Proof. By the classical Jackson theorem for several variables [3, Theorem 8, p. 90] if $n^{1 / s}$ is an integer we can find a polynomial P_{n} of degree $n^{1 / s}-1$ in each of its s variables such that

$$
\left\|f-P_{n}\right\|_{\infty} \leqq M_{s} n^{-r / s} \omega\left(n^{-1 / s}\right)
$$

for every $f \in \Lambda_{r \omega}^{s}$. It follows from this using the subadditivity and monotonicity properties of ω that

$$
d_{n}\left(\Lambda_{r \omega}^{s}\right)=O\left(n^{-r / s} \omega\left(n^{-1 / s}\right)\right) \quad \text { as } n \rightarrow \infty .
$$

To obtain a lower bound for d_{n} we notice that by Theorem 2.1 if $n<c_{1} H_{\epsilon}\left(\Lambda_{r \omega}^{s}\right)$ then $d_{n}\left(\Lambda_{r \omega}^{s}\right) \geqq \epsilon$. Since (cf. [1, p. 920])

$$
\frac{c_{2}}{\delta(\beta \epsilon)^{s}} \leqq H_{\epsilon}\left(\Lambda_{\tau \omega}^{s}\right) \leqq \frac{c_{3}}{\delta(\gamma \epsilon)^{s}}
$$

where $\delta=\delta(\eta)$ is defined by the equation $\delta^{\gamma} \omega(\delta)=\eta$ and $c_{2}, c_{3}, \beta, \gamma$ are positive constants, then any solution ϵ_{n} of

$$
n=\frac{c_{1} c_{2}}{2 \delta\left(\beta \epsilon_{n}\right)^{s}}
$$

provides a lower bound for $d_{n}\left(\Lambda_{r \omega}^{s}\right)$.
This equation may be rewritten as

$$
\delta\left(\beta \epsilon_{n}\right)=\left(\frac{n}{c_{4}}\right)^{-1 / 8} \quad\left(c_{4}=c_{1} c_{2} / 2\right)
$$

and hence recalling that $\delta^{r}\left(\beta \epsilon_{n}\right) \omega\left(\delta\left(\beta \epsilon_{n}\right)\right)=\beta \epsilon_{n}$ we obtain

$$
\beta \epsilon_{n}=\left(\frac{n}{c_{4}}\right)^{-r / s} \omega\left(\left(\frac{n}{c_{4}}\right)^{-1 / s}\right) .
$$

But then

$$
d_{n}\left(\Lambda_{r \omega}^{s}\right) \geqq \epsilon_{n} \geqq c_{5} n^{-r / s} \omega\left(n^{-1 / s}\right)
$$

where

$$
c_{5}=\frac{c_{4}^{r / s}}{\beta\left(\left[c_{4}^{-1 / 8}\right]+1\right)} .
$$

This completes the proof of Theorem 3.1.
4. n-widths of $\Lambda_{r \alpha}^{s p}$.

Theorem 4.1. The n-width of the class $\Lambda_{r \alpha}^{s p} \subset L^{p}(S)$ is given by

$$
d_{n}\left(\Lambda_{r \alpha}^{s p}\right) \approx n^{-(r+\alpha) / s} \quad(1 \leqq p<\infty)
$$

Proof. Since $\|g\|_{p} \leqq K\|g\|_{\infty}$ for all $g \in L^{p}(S)$ we have, by the s dimensional Jackson theorem,

$$
d_{n}\left(\Lambda_{r a}^{s p}\right) \leqq c n^{-(r+\alpha) / s}
$$

for the $L^{p} n$-width of $\Lambda_{r w}^{s p}$. To compute a lower bound we apply

Theorem 2.2 with $A=\Lambda_{r \omega}^{s p}$ and $X=L^{p}$. The entropy of the class $\Lambda_{r \alpha}^{s p}$ is given by [1, p. 921].

$$
H_{\epsilon}\left(\Lambda_{r \alpha}^{\iota p}\right) \approx \epsilon^{-s /(r+\alpha)} .
$$

Since $H_{\text {c }}$ satisfies the hypotheses of Theorem 2.2 the result follows as in §3.

References

1. G. G. Lorentz, Metric entropy and approximation, Bull. Amer. Math. Soc. 72 (1966), 903-937.
2. A. G. Vituškin, Theory of transmission and processing of information, Pergamon Press, New York, 1961.
3. G. G. Lorentz, Approximation of functions, Holt, New York, 1966.

Mathematics Research Center, University of Wisconsin and University of Texas

[^0]: Received by the editors December 21, 1968.
 ${ }^{1}$ Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No. DA-31-124-ARO-D-462.

