APPLICATIONS OF ϵ -ENTROPY TO THE COMPUTATION OF n-WIDTHS

J. W. JEROME AND L. L. SCHUMAKER¹

1. The concepts of ϵ -entropy and n-width of compact sets in Banach spaces play an important role in approximation theory (see [1], [2], [3] and references therein). The entropy and widths of many compact classes of smooth and analytic functions in various well-known function spaces have been computed.

It is known that entropy and n-width are related to each other, e.g., by certain integral inequalities (see [3, p. 164]). There is every reason to believe, however, that in general the behavior of one quantity does not determine in a sharp way the behavior of the other.

The purpose of this paper is to show how the implicit relationship between n-width and entropy inherent in certain negative Vituškin type results for nonlinear approximation can be utilized to compute n-widths of some classes of smooth functions. As examples we shall compute the n-widths for the following classes. Let S be an s-dimensional parallelopiped, and let ω be a monotone increasing subadditive function which vanishes at zero. We define $\Lambda_{r\omega}^s$ in C(S) and $\Lambda_{r\alpha}^{sp}$ in $L^p(S)$, $1 \le p < \infty$, as

(1.1)
$$\Lambda_{r\omega}^{s} = \Lambda_{r\omega}^{s}(M_{0}, \dots, M_{r+1}, S) = \{f: f \in C^{r}(S), \|D^{f}f\|_{\infty} \leq M_{j}, \\ 0 \leq j \leq r, \text{ and } \omega(D^{r}f; t) \leq M_{r+1}\omega(t)\}$$

$$\Lambda_{r\alpha}^{sp} = \Lambda_{r\alpha}^{sp}(M_{0}, \dots, M_{r+1}, S) = \{f: f \in C^{r}(S), \|D^{f}f\|_{p} \leq M_{j}, \\ 0 \leq j \leq r, \text{ and } \omega(D^{r}f; t) \leq M_{r+1}t^{\alpha}\}, \quad 0 < \alpha \leq 1,$$

where $\omega(D^r f; t)$ denotes the modulus of continuity of $D^r f$ and $D^j f$ denotes an arbitrary partial derivative of f of order j.

The *n*-widths of $\Lambda_{r\omega}^s$ have been computed elsewhere (cf. [3]) by other means, but the results for $\Lambda_{r\alpha}^{sp}$ are new.

2. Vituškin-type results. In this section we will state, after some initial definitions, theorems due to Vituškin and Lorentz which say in effect that if the n-width of a class is known to be less than ϵ , then n must be at least as large as the ϵ -entropy of that class. These theorems will later be exploited to obtain lower bounds for n-widths.

Received by the editors December 21, 1968.

¹ Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin, under Contract No. DA-31-124-ARO-D-462.

By the *n*-width, $d_n(A)$, of a set A in a Banach space $\mathfrak X$ we mean the number

$$d_n(A) = \inf_{\dim \mathfrak{M} = n} \sup_{f \in A} \inf_{g \in \mathfrak{M}} ||f - g||$$

where $\mathfrak{M} \subset \mathfrak{X}$, and by the ϵ -entropy $H_{\epsilon}(B)$ in \mathfrak{X} we mean the logarithm of the minimum number of sets of diameter $\leq 2\epsilon$ whose union contains B. Finally, $\lambda(\epsilon) \approx \mu(\epsilon)$ (weak asymptotic equivalence) is to mean that $\lambda = O(\mu)$ and $\mu = O(\lambda)$ as $\epsilon \to 0$.

We state first the theorem of Vituškin [1, Theorem 12, p. 928] which, though in its original form deals with nonlinear approximation, is here specialized to the case of linear approximation of the class Λ_{∞}^{s} .

THEOREM 2.1 (VITUŠKIN). Consider the class $\Lambda_{r\omega}^s \subset C(S)$. If $d_n(\Lambda_{r\omega}^s) < \epsilon$ then

$$(2.1) n \ge c_1 H_{\epsilon}(\Lambda_{r\omega}^s).$$

Lorentz [1, Theorem 6, p. 915] has proved analogous results for arbitrary separable Banach spaces:

THEOREM 2.2 (LORENTZ). Let A be an arbitrary compact set in a separable Banach space \mathfrak{X} and let $d_n(A) < \epsilon$. If $\forall q, 0 < q < 1, \exists c_1 > 0$ $\exists H_{c_1 \epsilon}(A) \leq q H_{\epsilon}(A)$, then

$$(2.2) n \ge c_1 H_{2}(A) - c_2.$$

Notice that for sufficiently small ϵ (i.e. sufficiently large n) (2.2) may be rewritten as

$$(2.3) n \geq c_3 H_{c2}(A).$$

3. *n*-widths of $\Lambda_{\tau\omega}^s$. In this section we illustrate our method by obtaining the following

THEOREM 3.1 (cf. [3, p. 135]). The n-width of the class $\Lambda_{\tau\omega}^s \subset C(S)$ is given by

$$d_n(\Lambda_{r\omega}^s) \approx n^{-r/s}\omega(n^{-1/s}).$$

PROOF. By the classical Jackson theorem for several variables [3, Theorem 8, p. 90] if $n^{1/s}$ is an integer we can find a polynomial P_n of degree $n^{1/s}-1$ in each of its s variables such that

$$||f - P_n||_{\infty} \leq M_s n^{-r/s} \omega(n^{-1/s})$$

for every $f \in \Lambda_{r\omega}^s$. It follows from this using the subadditivity and monotonicity properties of ω that

$$d_n(\Lambda_{r\omega}^s) = O(n^{-r/s}\omega(n^{-1/s}))$$
 as $n \to \infty$.

To obtain a lower bound for d_n we notice that by Theorem 2.1 if $n < c_1 H_{\epsilon}(\Lambda_{r\omega}^s)$ then $d_n(\Lambda_{r\omega}^s) \ge \epsilon$. Since (cf. [1, p. 920])

$$\frac{c_2}{\delta(\beta\epsilon)^s} \leqq H_{\epsilon}(\Lambda_{r\omega}^s) \leqq \frac{c_3}{\delta(\gamma\epsilon)^s}$$

where $\delta = \delta(\eta)$ is defined by the equation $\delta^r \omega(\delta) = \eta$ and c_2 , c_3 , β , γ are positive constants, then any solution ϵ_n of

$$n = \frac{c_1 c_2}{2\delta(\beta \epsilon_n)^s}$$

provides a lower bound for $d_n(\Lambda_{r\omega}^s)$.

This equation may be rewritten as

$$\delta(\beta\epsilon_n) = \left(\frac{n}{c_4}\right)^{-1/s} \qquad (c_4 = c_1c_2/2),$$

and hence recalling that $\delta^r(\beta\epsilon_n)\omega(\delta(\beta\epsilon_n))=\beta\epsilon_n$ we obtain

$$\beta \epsilon_n = \left(\frac{n}{\epsilon_A}\right)^{-r/s} \omega\left(\left(\frac{n}{\epsilon_A}\right)^{-1/s}\right).$$

But then

$$d_n(\Lambda_{r\omega}^s) \ge \epsilon_n \ge c_5 n^{-r/s} \omega(n^{-1/s})$$

where

$$c_5 = \frac{c_4^{r/s}}{\beta([c_4^{-1/s}] + 1)} \cdot$$

This completes the proof of Theorem 3.1.

4. *n*-widths of $\Lambda_{r\alpha}^{sp}$.

THEOREM 4.1. The n-width of the class $\Lambda_{r\alpha}^{sp} \subset L^p(S)$ is given by

$$d_n(\Lambda_{r\alpha}^{sp}) \approx n^{-(r+\alpha)/s}$$
 $(1 \leq p < \infty).$

PROOF. Since $||g||_p \le K ||g||_{\infty}$ for all $g \in L^p(S)$ we have, by the s-dimensional Jackson theorem,

$$d_n(\Lambda_{ra}^{sp}) \leq cn^{-(r+\alpha)/s}$$

for the L^p n-width of $\Lambda_{r\omega}^{sp}$. To compute a lower bound we apply

Theorem 2.2 with $A = \Lambda_{r\omega}^{sp}$ and $\mathfrak{X} = L^p$. The entropy of the class $\Lambda_{r\alpha}^{sp}$ is given by [1, p. 921].

$$H_{\epsilon}(\Lambda_{r\alpha}^{sp}) \approx \epsilon^{-s/(r+\alpha)}$$
.

Since H_{ϵ} satisfies the hypotheses of Theorem 2.2 the result follows as in §3.

REFERENCES

- 1. G. G. Lorentz, Metric entropy and approximation, Bull. Amer. Math. Soc. 72 (1966), 903-937.
- 2. A. G. Vituškin, Theory of transmission and processing of information, Pergamon Press, New York, 1961.
 - 3. G. G. Lorentz, Approximation of functions, Holt, New York, 1966.

MATHEMATICS RESEARCH CENTER, UNIVERSITY OF WISCONSIN AND UNIVERSITY OF TEXAS