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1. The concepts of «-entropy and «-width of compact sets in

Banach spaces play an important role in approximation theory (see

[l], [2], [3] and references therein). The entropy and widths of

many compact classes of smooth and analytic functions in various

well-known function spaces have been computed.

It is known that entropy and «-width are related to each other,

e.g., by certain integral inequalities (see [3, p. 164]). There is every

reason to believe, however, that in general the behavior of one quan-

tity does not determine in a sharp way the behavior of the other.

The purpose of this paper is to show how the implicit relationship

between «-width and entropy inherent in certain negative Vituskin

type results for nonlinear approximation can be utilized to compute

«-widths of some classes of smooth functions. As examples we shall

compute the «-widths for the following classes. Let S be an 5-

dimensional parallelopiped, and let w be a monotone increasing sub-

additive function which vanishes at zero. We define AJ„ in C(S) and

A£ in L'(S), l^p<oo,as

■ , Mr+i, S) = {/:/ E C(S), \\D% = Mj,

0 ^ / ^ r,    and    o)(7>7; t) = Mr+xo>(t)}

■ , Mr+i, S) = {/:/ E C\S), \\D% = Mj,

^ r,    and    co(7>7; /) = Mr+/}>    0 < a = 1,

where a(Drf; t) denotes the modulus of continuity of Drf and D'f

denotes an arbitrary partial derivative of / of order j.

The «-widths of Arùl have been computed elsewhere (cf. [3]) by

other means, but the results for Asr„ are new.

2. Vituskin-type results. In this section we will state, after some

initial definitions, theorems due to Vituskin and Lorentz which say

in effect that if the «-width of a class is known to be less than e, then

« must be at least as large as the «-entropy of that class. These

theorems will later be exploited to obtain lower bounds for «-widths.
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By the «-width, dn(A), of a set A in a Banach space 9C we mean the

number

dn(A) =      inf      supinf||/— g||
dim3TC=»   /S¿ se3K

where 311C9C, and by the í-entropy Ht(B) in 9C we mean the loga-

rithm of the minimum number of sets of diameter ^2e whose union

contains B. Finally, X(e)=p(e) (weak asymptotic equivalence) is to

mean that X = 0(p) and p = 0(X) as e—>0.

We state first the theorem of Vituskin [l, Theorem 12, p. 928]

which, though in its original form deals with nonlinear approxima-

tion, is here specialized to the case of linear approximation of the

class AJU.

Theorem 2.1 (Vituskin). Consider the class AsrwQC(S). If d„(A!¡.a)

<e then

(2.1) « ^ CiHc(Am).

Lorentz [l, Theorem 6, p. 915] has proved analogous results for

arbitrary separable Banach spaces:

Theorem 2.2 (Lorentz). Let A be an arbitrary compact set in a

separable Banach space 9C and let dn(A)<e. If Vg, 0<o<l, 3ci>0

3HClt(A)^qHi(A),then

(2.2) n ^ CiHe2e(A) - c2.

Notice that for sufficiently small € (i.e. sufficiently large w) (2.2) may

be rewritten as

(2.3) n ^ c3He2e(A).

3. «-widths of Ar„. In this section we illustrate our method by

obtaining the following

Theorem 3.1 (cf. [3, p. 135]). The n-width of the class K»QC(S)

is given by

¿n(A™) ~ n " °cc(n    ').

Proof. By the classical Jackson theorem for several variables [3,

Theorem 8, p. 90] if «1/s is an integer we can find a polynomial P„ of

degree «1/s —1 in each of its 5 variables such that

||/- P„||w ^ 37s«-r/»co(«-1/s)

for every /£A^,. It follows from this using the subadditivity and

monotonicity properties of « that
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d„(Aria) = 0(n     w(n     ))    as n—* °o.

To obtain a lower bound for d„ we notice that by Theorem 2.1 if

n<CiHt(KJ then dn(K,)^- Since (cf. [l, p. 920])

C2 ,    s C3

- ^ 77,(Ar„) ^-
«OSO' Í(t0'

where 5 = 6(77) is defined by the equation ôr«(5) =77 and c2, c¡, ß, 7

are positive constants, then any solution e„ of

CiC2

n =-
26(ßeny

provides a lower bound for dn(A?J.

This equation may be rewritten as

/M\-i/.

S(ßen) = l—J (c4 = CiC2/2),

and hence recalling that or(/3e„)w(á(|8€n)) =ßtn we obtain

-(r«(er>
But then

¿»(A™) £ «„ ^ C5M-''/sco(;^-1/,')

where

r/.
C4

C6 = 7a^jTi)'
This completes the proof of Theorem 3.1.

4. «-widths of A*.

Theorem 4.1. FAe n-width of the class A%QLP(S) is given by

dn(C) « n~(r+a)" (1 *><«)■

Proof. Since |¡g||¡, ̂Ti^gll«, for all gQLp(S) we have, by the 5-
dimensional Jackson theorem,

an(Aro) á cm

for the L" «-width of A^. To compute a lower bound we apply



722 J. W. JEROME AND L. L. SCHUMAKER

Theorem 2.2 with A =AZ and 9C = 7P. The entropy of the class A£

is given by [l, p. 921].

Ih(Ca) « e-««r+«>.

Since 77, satisfies the hypotheses of Theorem 2.2 the result follows as

in §3.
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