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One of our first interests in the study of ¿-spaces (spaces with the

weak ( = finest) topology generated by their compact subsets) was in

the determination of those subsets of a topological space which are

themselves ¿-spaces. If a subset A of a space X is a ¿-space, then a

subset of A is closed in A if it intersects every compact subset K of

X in a set closed in AHK. If a subset A which is not necessarily a

¿-space has this property relative to the compact subsets of X, then

we say that A has property (k). Throughout this paper, unless excep-

tion is noted, we shall assume that compact subsets are closed. A subspace

A of a space X is a ¿-space if and only if A has property (k) and A HK

is a ¿-space for each compact subset K of X (Theorem 1). It follows

that an open subset of a ¿-space in which compact subsets are regular

is itself a ¿-space. The case when the ¿-space is Hausdorff was first

established independently in [ó] by a different proof. This result is

similar to a theorem of N. E. Steenrod [7] (an open subset of a ¿-space

is a ¿-space if it is a "regular" open set). The class of subspaces of a

space X having property (k) is of interest in itself. For example, every

subset of X has property (k) if and only if for any set A EX and any

point xEA, there exists a compact set K such that xEAHK (Theo-

rem 2). A. Arhangel'skiï [l] calls spaces with this property ¿'-spaces.

Analogous to this theorem is a result proved by Arhangel'skiï [2]

which states that a space X is an hereditary ¿-space if and only if X

is a Fréchet-Urysohn space.

Theorem 1. A subset A of a space X is a k-space if and only if (1) A

has property (k), (2) AHK is a k-space for each compact subset K of X.

Proof. If A is a ¿-subspace of X, then A clearly has property (k)

and A meets each compact subset of X in a closed subset of A,

hence in a ¿-subspace of A. Conversely, let U be a subset of A which

intersects every compact subset of A in a closed set and let C be a

compact subset of X. We have that AHC is a ¿-space; thus UHC is

closed in AHC. Since A has property (k), U is then closed in A and

A is a ¿-space.

Corollary 1.1. Every open subset of a k-space in which compact

subsets are regular is a k-space.
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Proof. Let V be an open subset of a fe-space X and let U be a

subset of V which intersects every compact subset K of X in an open

subset of VC\K. Then UC\K is open in K. Hence U is open in X and

Vhas property (k). Since VC\K is locally compact it is also a fe-space.

Thus F is a fe-space.

Corollary 1.2. If X is a space in which compact subsets are regular

and every point of X is interior to a k-subspace of X, then X is a k-space.

Proof. Let A he a subset of X which intersects every compact

subset of X in a closed set. Let xQA and let U he an open fe-subspace

of X containing x. Now, let K be a compact subset of Ui^A. Since

K(~\A is closed, KC\(Ar\U) is closed in Ui\I. Thus AC\U is

closed in UC\A. Therefore, since

x Qu r\lr\ Trvu = .1 r\ u,

A is closed and X is a fe-space.

It is easily seen that the separation in Corollary 1.1 cannot be

removed. Consider a Ti non-fe-space Y. Compactify Y by adjoining

an additional point x and defining neighborhoods of x to be comple-

ments of finite subsets of Y. Y\J {x} is a compact Fi space and Y is

an open subset.

In Theorem 1, note that the assumption that compact subsets of

X are closed is needed only in the sufficiency to obtain (2). The fol-

lowing example, due to the referee of this paper, shows that (2) is

not obtainable without such an assumption.

Let F be a Ti space which is not a fe-space, F* is one-point com-

pactification, and let X= FW{xi, x2} be the quotient formed by

identifying the copies of Y in the disjoint union of two copies of F*.

Then X, Xi= FU{xi} and X2= F{x2| are compact, while XiP\X2

= Y is not a fe-space.

By the following examples we will show the independence of the

two conditions in Theorem 1.

(1) Let R = Reals. Then RR is not a fe-space [4] but it is a completely

regular Hausdorff space. Thus it is embeddable in a compact Haus-

dorff space. In Theorem 2 we show that every subset of a compact

Hausdorff space has property (k).

(2) In [3] we show that, if X is a nondiscrete Ti space, then there

exists a fe'-space Y such that XX Y is not a fe'-space. In particular if

X= {l, 2, ■ • • , o}}, with the order topology, and F=(7X7)W{z|

where 7 is the positive integers, 7X7 discrete, and neighborhoods of

z are complements of sets consisting of a finite number of elements in

{(m, «):« = !, 2, • • • } for each m, and  G = U«W  \(i, n, i):n = l,
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2, • • • }, then (w, z)EC and (a, z)^_CHK for any compact subset

KoiXXY. Let C = (XJ {(w, z)}. It follows without much difficulty

that C'HK is a ¿-space for each compact subset K of X X Y and that

C is not a ¿-space.

It is readily verified that ¿'-spaces are ¿-spaces. But there are k-

spaces which are not ¿'-spaces (see [l], [3], [5]). We have, however,

the following characterization of a ¿'-space.

Theorem 2. A space X is a k'-space if and only if every subset of

X has property (k).

Proof. Let A be a subset of X and U a subset of A which meets

every compact subset of X in a set closed in A. Since every limit point

of U in A is a limit point of U intersected with some compact set,

it follows that U is closed in A and A has property (k). Conversely,

suppose X is not a ¿'-space. Thus there is a subset A of X and a point

xEA—A which is not a limit point of the intersection of A with

any compact subset of X. If A' is a compact subset of X, then

AH K = J7VKH [KH(A\J {*})].

Since A \J {x} has property (k), A is closed in A W {x}, which contra-

dicts the fact that xEA.

Theorem 3. A subspace A of a k'-space X is a k'-space if and only

if A HK is a k'-space for each compact subset K in X.

Proof. Let A' be a compact subset of X and let B be a subset of

AHK. Since every limit point of B in AHK is clearly a limit point

of B in A, it follows that AHK is a ¿'-space. Conversely, if B is a

subset of A and x is a limit point of B in A, then there is a compact

set K such that

x E BHKH A EBH(AHK).

Thus there is a compact subset C of A for which

* G B~HC.

Hence A is a ¿'-space.

Corollary 3.1. Let X be a space in which compact subsets are regu-

lar. (1) If X is a k'-space, then every open subset of X is a k'-space. (2)

If each point of X is interior to a k'-space, then X is a k'-space.
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