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I. Introduction. (Deterministic) Turing machines, named after

A. M. Turing [5], have been used to characterize a class of numerical

functions—(deterministically) computable functions [2]. In the

present paper, a more general machine will be defined which corre-

sponds to probabilistic Turing machine. With this will come a math-

ematical characterization of a class of random functions—computable

random functions—and another class of numerical functions—

probabilistically computable functions. It turns out that the latter

contains the (deterministically) computable functions as proper

subclass.

II. Probabilistic Turing machines.

Definition. A probabilistic Turing machine (PTM) may be de-

fined through the specification of two finite nonempty sets U and 5,

UC\S=0 (empty set), and a function p from SXUXVXS into

[0, 1] where V=UU{R, L, T} and RQ U, LQ U, TQU. The func-
tion p satisfies the following conditions:

(i)   2>er 2«'es p(s, u, v, s') = 1 for every sQS and uQ U;

(ii) for every uQU, p(s, u, T, s')=0 if s¿¿s'.

The set U is the set of symbols which the PTM is capable of print-

ing and the set S is the set of internal states. The symbols R, L and T

represent, respectively, a move of one square to the right, a move of

one square to the left, and the machine stops (terminates). The func-

tion p is the conditional probability of the "next act" of the machine

given that the machine is at state 5 and scanning a square on which

appears the symbol w.

A (deterministic) Turing machine is a PTM in which the range of

p consists of only two numbers, namely, 0 and 1. Note that in this

case, p is completely determined by the set

Cp = {(s> ui l'> s') '■ P(s> M> v, s>) = 1 and v ?* T}.

Definition. Let Z = (U, S, p) be a PTM. An expression a of Z is a

finite sequence (possibly empty) of symbols chosen from £AJS. a is

an instantaneous expression of Z iff (if and only if) it contains exactly

one sQS and 5 is not the rightmost symbol, a is a tape expression iff

it consists entirely of symbols from U. If a is an instantaneous ex-

Received by the editors July 25, 1968.

704



PROBABILISTIC TURING MACHINES AND COMPUTABILITY 70S

pression of Z which contains s ES and u is the symbol immediately

to the right of s, then we call 5 the state of Z at a and u the symbol

scanned by Z at a. The tape expression obtained by removing s from

a is called the expression on the tape of Z at a.

Definition. Let Z = (U, S, p) be a PTM. For every instantaneous

expression a and ß of Z, define

qz(a, ß) = p(s, u, u', s')    if a = ysuô, ß = ys'u'o, u' E U,

= p(s, u, R, s')    if a = ysuu'ô, ß = yus'u'ô,        u' E U

or a = ysu, ß = yus'uo,

= p(s, u, L, s')    if a = yu'sub, ß = ys'u'uo,        u' E U

or a = su8, ß = s'uouB,

= 0                        otherwise,

where y and ô are (possibly empty) tape expressions of Z and the

symbol uoE U stands for B, i.e., blank.

The qz(ot, ß) given above is the probability that the "next" instan-

taneous expression of Z will be ß given that Z "starts" with instan-

taneous expression a. The function qz(a, ß) may be extended to

qM(a, ß), n = 0, 1, 2, • ■ -, as follows:

qz\a, ß) = 1 if a - ß,

= 0        if a 9¿ ß,

(n). ■r->     (n-1) .        . .

qz  (a, ß) = 2^°z       (a> 7)9z(7, 18),
T

where the summation ranges over all instantaneous expression 7.

2z"(a, |3) may be interpreted as the probability that the instantaneous

expression of Z will be ß "after n steps" given that Z "starts" with

instantaneous expression a.

By induction, it can be shown that for every instantaneous expres-

sion a and nonnegative integer n,

E?*W)ái.ß
From the above definitions, it is clear that a PTM behaves like a

stochastic sequential machine as defined in [l ] or a stochastic sequen-

tial-like machine as defined in [4]. Moreover, it is interesting to note

that a Markov chain may be associated with each PTM where the

states are the instantaneous expressions and an additional absorbing

state corresponding to the termination of the machine.
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Definition. Let Z = (17, S, p) he a PTM. For every instantaneous

expression a and ß of Z, and for every «= 1, 2, • • • , define

tz   (a, ß) = p(s, u, T, s)qz      (a, ß)

where 5 is the state of Z at ß and u is the symbol scanned by Z at ß.

Moreover, define

oo

tz(a,ß) = Z¿n,(a,i8);
n=l

t™(a, ß) may be interpreted as the probability that after « steps, Z

will terminate with instantaneous expression ß, given that Z starts

with instantaneous expression a. The interpretation of tz(a, ß) is

obvious.

That the series defining tz(a, ß) converges follows from the fact

that for every instantaneous expression a and positive integer «,

ß L ¡fc=i J

III. Computable random functions. In order to have PTM per-

form numerical computations, it is necessary that a suitable repre-

sentation for numbers be introduced. In the present paper, we shall

adopt the representation used in [2].

We assume that U always contains the two symbols B and 1. If

« is a positive integer, «" will denote the expression u u ■ ■ ■ u (n

times) that consists of « occurrences of u. For completeness sake,

we take w° to be the null expression. With each nonnegative integer

«, we associate the tape expression « where « = ln+1 and with each

¿-tuple («1, «2, • • • , M*) of nonnegative integers, we associate the

tape expression

(«i, n2, ■ ■ • , nk)    where    (m, «2, • • • , nk) = niBn2B ■ • ■ Bnk.

If a is an expression, then (a) will denote the number of occurrences

of 1 in a. Note that

(m - 1) = m    and    (aß) = (a) + (ß).

Definition. A £-ary random function 0 is a function from £i+1,

the collection of all (fc-fT)-tuples of nonnegative integers, into [O, l]

satisfying

»

]£ <t> (mi, m2, ■ • • , mk, »)ál
m=0
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for every ¿-tuple (nt\, m2, • • • , mk).

Definition. Let Z = (U, S, p) be a PTM. Then, for each positive

integer k, we associate a £-ary random function «fr* as follows.

$z (nti, m2, ■ ■ ■ , mk, m) =   2~2 k(«> ß)
{ß)=m

where

a = si(mi,m2, ■ ■ ■ ,mk),        SiES

and the summation ranges over all instantaneous expression ß of Z

such that (ß)=m.

The 5i in the above definition plays the role of the initial state in a

stochastic sequential-like machine. If, however, instead of an initial

state, the initial distribution h is given, then we define

(*) |S|
$z  (mi, m2, • ■ • , mk, m) =   2~L   X) h(st)tz(ai, ß)

(ß)=m    1=1

where

ai = Si(mhm2, ■ • ■ ,mk),       SiES

and | S\ is the cardinality of S.

That &z is a &-ary random function follows immediately from the

definition of tz(a, ß).

Definition. A fc-ary random function <p is computable iff <p=$z}

for some PTM Z.

Given a random function, one may associate numerical functions

with it in various ways. A particular way will be introduced below.

Definition. A &-ary function / is a mapping from a subset D¡ of

£* into E\

Definition. Let/ be a ¿-ary function, <p a &-ary random function

and X£ [0, 1). / is said to be generated by d> with threshold X iff

(i) for every (mu m2, ■ • ■ , mk)^D/t d>(mu m2, ■ ■ ■ , mk, m) ^X for

all m, and

(ii) for every (mi, m2, • • • , mk)ED}, if f(mu m2, • ■ ■ , mk)=m,

then

<t>(mh m2, ■ ■ ■ , mk, m)

= sup{#(OTi, m2, • • • , mk, m'): m! = 0, 1, 2, • • • } > X.

Let C(<p, X) be the collection of all è-ary functions which are gener-

ated by <p with threshold X. Since
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22 <t>(m, m2, ■ ■ • , mk, m) = 1,

therefore sup {<p(«íi, m2, • • • , mk, m): m = 0, 1, 2, • • • } is attained.

Thus C(<p, X) 5^0. Moreover, if X^|, then C(<p, X) contains only one

element, i.e., the è-ary function generated by # with threshold X^§

is unique.

Definition. A è-ary function / is a probabilistically computable

function (PCF) with threshold X iff there exists a PTM Z such that

/ is generated by d>^> with threshold X.

It follows from the above remark that every PTM gives rise to

at least one &-ary function which is a PCF with threshold X where

k and X are arbitrary.

In the above definition, if Z is a deterministic Turing machine,

then we say that/ is a deterministically computable function (DCF).

Definition. A /fe-ary function/ is a PCF iff / is a PCF with thresh-

old X for some X£ [0, l].

It is apparent that PTM may also be used to characterize a class

of random word functions. The procedure is similar to that given

in [6].

IV. PCF versus DCF. In this section, we shall show that the class

of PCF is nondenumerable. Since it is well known that the class of

DCF is denumerably infinite, it will follow immediately that the

class of DCF is a proper subclass of the class of PCF.

Definition. Let Z = (U, S, p) he a PTM where

•S  =   {5i, 52, S¡,   •  •  ■ , Skf

and « a positive integer. By Z(n) we shall mean the PTM obtained

from Z by replacing each SiQS by sn+i.

Definition. Let Zi = (Uu Slt pi) and Z2 = (U2, S2, p2) be PTM

such Sif\S2 = {5}. By Zi->Z2 we shall mean the PTM (U, S, p) where

U= U¿J U2, S = SiUSü and

p(s, u, v, s') = pi(5, u, v, s')    if 5, s' Q Si,   u QUi,   vQ Vi and 5^5,

= p2(s, u, v, 5')    if 5, 5' QS2,    uQ U2,    v Q F2,

= 1 ils = s'QSi,   uQUi,   v=T

or 5 = 5' Q Si,   u Q U2,   v = T,

= 0 otherwise.

In the rest of the section, we shall replace B by 0.
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Let R = (U, S, p) he a (deterministic) Turing machine where

U = {0, 1, a, b, c],       S = {si, s2, ■ ■ ■ , J13J

and Cp consists of

(si,l,R,si),    (su0,b,si),    (si,b,L,s2), (s2, 1,0, i2),

(52,0,7,53),    (s3, l,c, si),    (sí,c,R,ss), (s6, 0, R, Si),

(ss,l,R,s6),    (st,b,L,s»),   (st, 0,1,57), (57,1,7,57),

(57,0,7,57),     (57, c, 0, 58),     (58, 0, 7, 53), (56, 1,0, 59),

(59,0,7,5io),   (5io,0,l,57),  (510,1,0,59), (s3,0,R,sn),

(sn, 0, R, sn), (in, 1, 7,512), (512,0, a, sn).

It is easy to verify that for every a = sxm, tß(a, ß) = l implies ß=asi3yb

where y is the binary expansion of m.

Let Q=(U, S, p) be a PTM where U={0, 1, a, b}, 5= {su ss} and

p(si, 0, R, si) = 1 p(sul,R,Si) =1/2

p(si, 0, R, st) = 0 p(si, I, R,s2) =1/2

p(s2,0, R, 5,) = 1/2       p(sit 1, R, si) = 0

p(s2,0, i?, 52) = 1/2 ^(52, 1, R, s2) = 1

¿(ii, a, R, si) = 1 p(s2, a, T, s2) = 1

p(si, b, b, si) = 1 p(si, b, T, s2) = 1

p(s, u, v, 5') = 0    otherwise.

Lemma 1. For every a = asxyb where

y = ii it ■ ■ • i„,        ik E (0, l},        k = 1,2, ■ ■ • , n,

tQ(a, ß) = 0    if ß ^ as2yb    and    lQ(a, ß) = . in • • • i2ii

which is written in binary expansion if ß = as2yb.

Proof. Let P0 and Pi be the matrices given below:

-a ;) »-Ç? f)
It is well known that if

Pifi* ■ ■ ■ Pin = (*   %       ik G {0, 1},       k = 1, 2, • • • ,n,

then q= .in • • ■ iiix where q is written in binary expansion. The

conclusion follows immediately from this property of P0 and Pi.
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Let iii2 ■ ■ ■ in he the binary expansion of m, we shall denote by

b(m) the number .in ■ • • iéi written in binary expansion and by

g(m) the number of occurrences of 1 in iii2 • ■ ■ in. From the above

constructions, it follows that

Lemma 2. Let Z = i?-^f2(12) then

$z (mi, m) = b(mi)    if m = g(wt)

= 0 otherwise.

Lemma 3. Let Z = R—*Q(12) and X£[0, 1). Then there is a unique

1-ary function f\ which is generated by &$ with threshold X. Moreover,

h(m) = g(m) if b(m) > X

= undefined   if b(m) ^ X.

Theorem./Xl=/x2 ¿#Xi=X2.

Proof. Let 7)(X) be the domain of definition of f\. If Xi<X2, then,

by Lemma 3, 7)(Xi)3Z>(X2). Since b(m) is dense in [0, 1), there exists

an mo such that \i<b(m0) <X2. Again by Lemma 3, m0QD(\i) but

m0QD(\2). Thus/Xl?i/x2.

Corollary. The class of all PCF is nondenumerable.

The matrices P0 and Pi were used by Rabin [3] to show that the

set of tapes acceptable by probabilistic automata is nondenumerable.
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