A NOTE ON SEMIFREE ACTIONS OF S¹ ON HOMOTOPY SPHERES

HSU-TUNG KU1

1. Introduction. Let $(S^1, \Sigma^{n+2k}, \Sigma^n)$, $k \ge 2$, denote a semifree differentiable action of S^1 on homotopy (n+2k)-sphere Σ^{n+2k} with the fixed point set the homotopy n-sphere Σ^n , that is, S^1 acts freely outside Σ^n . We shall call Σ^n untwisted if the normal bundle of Σ^n in Σ^{n+2k} is trivial [2]. The purpose of this note is to study the semifree differentiable actions of S^1 on homotopy spheres with homotopy spheres as untwisted fixed point sets. In fact, we shall establish the following theorems by using the results of R. Lee [7].

THEOREM 1. Let $n \equiv 3 \pmod{4}$ and $4k-1 \leq n$. If the homotopy sphere Σ^{n+2k} admits a semifree differentiable S^1 action with untwisted fixed point set Σ^n , then Σ^{n+2k} admits infinitely many differentiably distinct, semifree, differentiable S^1 actions with untwisted fixed point set Σ^n .

THEOREM 2. There are an infinite number of distinct semifree S^1 actions on S^{17} with every element of $32\theta_{11}$ as untwisted fixed point set. For notation θ_n , see [4, p. 504].

2. Proofs of the theorems.

DEFINITION 1. The standard (semifree) action of S^1 on S^{n+2k} with untwisted fixed point set S^n is defined as follows: Write

$$S^{n+2k} = \left\{ (x_1, \dots, x_{n+1}, z_1, \dots, z_k) \in R^{n+1} \times C^k \mid \sum_{i=1}^{n+1} x_i^2 + \sum_{i=1}^k |z_i|^2 = 1 \right\}$$

For
$$g \in S^1$$
, $(x_1, \dots, x_{n+1}, z_1, \dots, z_k) \in S^{n+2k}$, the action is defined by $g(x_1, \dots, x_{n+1}, z_1, \dots, z_k) = (x_1, \dots, x_{n+1}, gz_1, \dots, gz_k)$.

We denote this action simply by (S^1, S^{n+2k}, S^n) .

Let $(S^1, \Sigma^{n+2k}, \Sigma^n)$ be any semifree differentiable action of S^1 on Σ^{n+2k} with untwisted fixed point set Σ^n . Then the action around the fixed point set is equivalent to $(S^1, \Sigma^n \times D^{2k}, \Sigma^n \times 0)$ given by

$$g(x, z_1, \cdots, z_k) = (x, gz_1, \cdots, gz_k),$$

Received by the editors October 3, 1968 and, in revised form, January 13, 1969.

¹ The author is indebted to the referee for pointing out some errors in the earlier version of this paper.

for all $g \in S^1$, $x \in \Sigma^n$ and $(z_1, \dots, z_k) \in D^{2k}$, where gz_i $(i = 1, \dots, k)$ is the complex multiplication of g and z_i in C. Let $-\Sigma^n$ be the homotopy sphere Σ^n with orientation reversed and $(S^1, -\Sigma^{n+2k}, -\Sigma^n)$ be the action induced by $(S^1, \Sigma^{n+2k}, \Sigma^n)$. Let $(S^1, \Sigma^{n+2k}, \Sigma^n)$ and $(S^1, \Sigma^{n+2k}, \Sigma^n)$ be any two semifree actions with untwisted fixed point sets. Since the actions around the fixed point sets Σ^n_1 and Σ^n_2 are equivalent, the equivarient connected sum $(S^1, \Sigma^{n+2k}_1 \# \Sigma^{n+2k}_2, \Sigma^n_1 \# \Sigma^n_2)$ is well defined. Two semifree S^1 actions with untwisted fixed point sets, $(S^1, \Sigma^{n+2k}_1, \Sigma^n_1)$ and $(S^1, \Sigma^{n+2k}_2, \Sigma^n_2)$ are said to be equivalent if the underlying knots $(\Sigma^{n+2k}_1, \Sigma^n_1)$ and $(\Sigma^{n+2k}_2, \Sigma^n_2)$ are isotopic. The equivalence class of $(S^1, \Sigma^{n+2k}, \Sigma^n)$ is denoted by $[S^1, \Sigma^{n+2k}, \Sigma^n]$. Let SF(n+2k, n) be the set of equivalent classes. Then SF(n+2k, n) is an abelian group under the equivariant connected sum operation:

$$[S^{1}, \Sigma_{1}^{n+2k}, \Sigma_{1}^{n}] + [S^{1}, \Sigma_{2}^{n+2k}, \Sigma_{2}^{n}] = [S^{1}, \Sigma_{1}^{n+2k} \# \Sigma_{2}^{n+2k}, \Sigma_{1}^{n} \# \Sigma_{2}^{n}].$$

For if $(S^1, \Sigma^{n+2k}, \Sigma^n)$ is a representative of $[S^1, \Sigma^{n+2k}, \Sigma^n]$ in SF(n+2k, n), then the imbedding $\Sigma^n \# -\Sigma^n \to \Sigma^{n+2k} \# -\Sigma^{n+2k}$ is isotopic to the standard imbedding $S^n \to S^{n+2k}$. Hence SF(n+2k, n) is an abelian group with zero element $[S^1, S^{n+2k}, S^n]$.

Let $SF(n+2k, n)^*$ and $SF(n+2k, n)^{**}$ be the subgroups of SF(n+2k, n) consisting of elements $[S^1, \Sigma^{n+2k}, \Sigma^n]$ with $\Sigma^{n+2k} = S^{n+2k}$ and $\Sigma^n = S^n$ respectively. Define

$$SF(n + 2k, n)^{\sim} = SF(n + 2k, n)^* \cap SF(n + 2k, n)^{**}.$$

Let us recall that $\theta^{n+2k,n}$ denotes the group of isotopy classes of knotted *n*-spheres in S^{n+2k} [6], and bP_n be as in [4, p. 510].

DEFINITION 2. We define the homomorphisms

$$\alpha(n+2k,n): SF(n+2k,n) \to \theta_{n+2k}$$

and

$$\beta(n+2k,n): SF(n+2k,n) \to \theta_n$$

by

$$\alpha(n+2k,n)[S^1,\Sigma^{n+2k},\Sigma^n]=\Sigma^{n+2k}$$

and

$$\beta(n+2k,n)[S^1,\Sigma^{n+2k},\Sigma^n]=\Sigma^n.$$

The diagram below is clearly commutative with exact rows and columns:

$$0 \downarrow 0 \downarrow \downarrow 0$$

$$0 \rightarrow SF(n+2k,n)^{\sim} \rightarrow SF(n+2k,n)^{*} \downarrow \downarrow 0 \rightarrow SF(n+2k,n)^{**} \rightarrow SF(n+2k,n) \xrightarrow{\beta(n+2k,n)} \theta_{n} \downarrow \alpha(n+2k,n)$$

$$\theta_{n+2k}$$

LEMMA 1. The groups $SF(n+2k, n)^{\sim}$, $SF(n+2k, n)^*$, $SF(n+2k, n)^{**}$ and SF(n+2k, n) are infinite if $n \equiv 3 \pmod{4}$ and $4k-1 \leq n$.

PROOF. Let $\Sigma^{n+2k,n}$ be the kernel of $\theta^{n+2k,n} \to \theta_n$, and let $\Sigma_0^{n+2k,n}$ be the subgroup of $\Sigma^{n+2k,n}$ of knotted spheres which bound framed submanifolds in S^{n+2k} . Then $\Sigma_0^{n+2k} \approx Z$ under the hypotheses by [6]. According to [7, 5.2, 5.4], there exist infinitely many elements in $\Sigma_0^{n+2k,n}$ such that every element $[S^{n+2k}, S^n]$ has a representative (S^{n+2k}, S^n) which can be realized as the fixed point knot of a semifree differentiable S^1 action on S^{n+2k} with untwisted fixed point set S^n . Thus $SF(n+2k,n)^{-n}$ is infinite. This proves Lemma 1.

To prove Theorem 1, let $\Sigma^{n+2k} \in \text{Im } \alpha(n+2k, n)$ and $\beta \in \text{Im } \beta(n+2k, n)$. Then $\alpha(n+2k, n)^{-1}(\Sigma^{n+2k}) \cap \beta(n+2k, n)^{-1}(\Sigma^n)$ contains infinitely many elements by Lemma 1. The proof is complete. Now we recall a theorem of Browder [2, (6.2)]:

THEOREM 3 (BROWDER). Suppose $n \equiv 3 \pmod{4}$ and k > 1, k odd, and let $I_0(CP^{k-1} \times S^n) = \{\Sigma \in \theta_{n+2k-2} | (CP^{k-1} \times S^n) \# \Sigma \text{ is diffeomorphic to } CP^{k-1} \times S^n\} \cap bP_{n+2k-1} \text{ and } l = \text{order of } I_0(CP^{k-1} \times S^n).$ Then an element $\Sigma^n \in bP_{n+1}$, n > 3, occurs as an untwisted fixed point set of a semifree S^1 action on a homotopy sphere Σ^{n+2k} if and only if $\Sigma^n \in (m_{n,k}/l)bP_n$, where $m_{n,k}$ is the order of bP_{n+2k-1} .

Applying Theorem 3 to n=11 and k=3, since the orders of θ_{17} and bP_{16} are 16 and 8128 respectively, we may use the connected sum method to show that there are semifree S^1 actions on S^{17} with every element of $8128\theta_{11}=32\theta_{11}=Z_{31}$ as untwisted fixed point set. But 4k-1=n, so we can apply Theorem 1. This completes the proof of Theorem 2.

Browder has found some exotic spheres in Im $\beta(n+2k, n)$ [2]. In general the groups Im $\alpha(n+2k, n)$ and Im $\beta(n+2k, n)$ are hard to compute.

REFERENCES

- 1. E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2 (1966), 1-14.
- 2. W. Browder, Surgery and the theory of differentiable transformation groups, Proc. Conference on Transformation Groups, Springer-Verlag, New York, 1968.
- 3. F. Hirzebruch and K. H. Mayer, O(n)-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Mathematics 57, Springer-Verlag, New York, 1968.
- 4. M. Kervaire and J. Milnor, Groups of homotopy spheres. I, Ann. of Math. 77 (1963), 504-537.
- 5. Hsu-Tung Ku and Mei-Chin Ku, Semifree differentiable actions of S¹ on homotopy (4k+3)-spheres, Michigan Math. J. 15 (1968), 471-476.
- 6. J. Levine, A classification of differentiable knots, Ann. of Math. 82 (1965), 15-50.
- 7. R. Lee, Differentiable classification of some topological linear actions, Dissertation, University of Michigan, Ann Arbor, Mich., 1968.

University of Massachusetts