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Throughout this note L/K denotes a purely inseparable field

extension of characteristic p and nonzero exponent. In [5, p. 745],

Rygg proves that when L/K has bounded exponent, then a subset

M of L is a relative ¿-base of L/K if and only if M is a minimal gen-

erating set of L/K. The purpose of this note is to answer the following

question : If every relative ¿-base of L/K is a minimal generating set,

then must L/K he of bounded exponent? The answer is known to be

yes when K and 2>* are linearly disjoint, * = 1, 2, • • • , see [l]. We

give two examples for which the answer is no: One in which the maxi-

mal perfect subfield of L is contained in K, and the other in which it

is not.

The following lemmas are needed for our examples. An intermedi-

ate field V of L/K is called proper if KCLL'EL.

Lemma 1. Every relative p-base of L/K ([2, p. 180]) is a minimal

generating set of L/K if and only if there does not exist a proper inter-

mediate field L' of L/K such that L—L'(LP).

Proof. If L = L'(LV), where L' is a proper intermediate field of

L/K, then V contains a relative ¿-base M of L/K. Thus ZOZ/

^K(M). Conversely, if there exists a relative ¿-base M of L/K such

that LDK(M), then L = L'(L"), where L' = K(M).    Q.E.D.

Lemma 2. Suppose L=K(mi, m2, ■ ■ ■), where miEK(mi+i),

i = l, 2, • • • . Then K, K(mf'), L are the intermediate fields of L/K,

0^ji<d (d the exponent of m¡ over i?(m,-_i)), i — l, 2, ■ ■ ■ , where

K(m9) means K.

Proof. Let e[ denote the exponent of j»< over K,i = l, 2, • • • . By

[2, p. 196, Exercise 5], the intermediate fields of K(m,)/K are

K(mf), Ogje = e/. If 0<t<s, then K(mt)EK(m,), whence K(mt)

= K(mf'~'''). Thus the intermediate fields of K(m,)/K are K, K(mf),

0^ji<e{, i — i, • • • , s. Let K' be any intermediate field of L/K.

If [K':K]<cc, then K'/K is finitely generated. Hence K'çZK(m.)

for some m, since £ = Ui"i K(m/). Thus K' = K(mfi) for some w< by

the preceding argument. If [â":X] = °o, then K' is the union over c

of K(c) for all cEK'. Now K(c)=K(m(ic)DK(mic-1) for some mic
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and for all cQK' — K by the previous argument. Since [7i':7iC] = oo,

ic is an unbounded function of c. Thus K' =L.    Q.E.D.

Example 1. L/K is of unbounded exponent, the maximal perfect

subfield of L is not contained in K, and every relative p-base of

L/K is a minimal generating set of L/K: Let P he a perfect field

and z, y, Xi, x2, • • • independent indeterminates over P. Let K

= P(z, y, Xi, x2, • • ■ ) and L = K(mu m2, • ■ ■ ), where «i, = zp_<_1 x^-1

+yv~1, i = l, 2, • • • . Clearly, L/K is of unbounded exponent.

P(zp~1, zp~2, • • • ) is the maximal perfect subfield of L and is not in

K. By Lemma 1, every relative p-base of 7,/TiC is a minimal generating

set of L/K if we show that L?£L'(LP) for any proper intermediate

field 7/ of L/K. We postpone this proof.

Example 2. L/K is of unbounded exponent, the maximal perfect

subfield of L is contained in K, and every relative p-base of L/K is

a minimal generating set of L/K: Let P be a perfect field and y, Xi,

x2, • • • independent indeterminates over P. Let K = P(y,Xi,x2, ■ ■ ■)

and L=K(mi, m2, • ■ ■ ), where mi=xp1 and ?«.+i = («i?y+x,+i)p~\

i = l, 2, • • ■ . Clearly, L/K is of unbounded exponent. It follows

that L=P(y, mi, m2, • • • ) and that {y, mi, m2, ■ ■ ■ ] is an alge-

braically independent set over P. That is, L/P is a pure transcenden-

tal extension. Thus P, PÇK, is the maximal perfect subfield of L

by Corollary 2 of [3, p. 388]. By Lemma 1, it remains to be shown

that L^L'(LP) for any proper intermediate field 7/ of L/K.

We prove simultaneously for Examples 1 and 2 that such a field 7/

cannot exist. In both examples, it follows that K(Lp)=K(m\, m\, ■ ■ •) ,

mPQK(mp+l) and mp+1 has exponent 1 over K(mp) for t = l, 2, ■ • • .

Hence, by Lemma 2, the intermediate fields of K(LV)/K appear in a

chain. Now suppose there exists a proper intermediate field L' of

L/K such that L = L'(L*). Since L'^K(L*>), LT\K(L")=K(mpi) lor
some integer sïîO. We show 7/ and K(LP) are linearly disjoint over

K(mp) by showing that for every proper intermediate field K' of

K(LV) / K(m,v), 7/ and 7Í' are linearly disjoint over K(mp). By Lemma 2,

K' = K(mvt) for ¿^5. Now wzf has exponent i—5 over K(mv)ÇL'.

If ((O^O^'GL', then we contradict L'T\K(L») = K(m*). Hence

the irreducible polynomial of mf over K(mv) remains irreducible over

L'. Thus 7/ and K(mp) are linearly disjoint over K(mv), whence V

and K(LP) are linearly disjoint.

Since L = L'(L'), ms+iQL'(Lp). Hence ma+i= EC-1 c/«)' for
some integer /, where c} QL'. Now t^.s + 2 since «i,+i has exponent

2 over 7£(mf) and L' has exponent 1 over K(mv). Thus

P V-v    'P/    P\iP
m'+i = 2^ c> (mt) •

j
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By the division algorithm, jp=pt~'qj+rj, 0^rj<p'~'. Hence

(*) m'+i = 2~1 (c?(m't)"   q')(mt)'
i

and

'P/P\pt'q> " i-   t' r\   rp
Cj (mt) = Cj E L (\L.

Writing wf+1 in terms of mf, we get for Example 1:

P /    f»P ,t ,
m,+i = (mt) KoXt+i — *i,

where

and

By (*),

,p      -i
KO   =   Xt

l-»-l „<-»-l
, P —P
ki = y        xt x,+i

(mt) x,+i = ko h + ko   2~1 Cj(mt)
Ps'i

Hence, by the linear disjointness of L' and K(LP) over K(ml) and

since {(mvt)'\j = 0, • • • ,p'~' — l} is linearly independent over K (mvs),

xs+iEL'C\Lp. Thus x%+lEL, a contradiction.

For Example 2, we get

p ,   p  .p -i -i ,   p. p'"*"1 ,p -i      .
me+i = (m,+2) y    — xí+2y    = ■ ■ ■ = (mt) k0y    — h

for suitable ko, kiEK. By an argument similar to that in Example 1,

we obtain yrlEL, a contradiction.

Remark. Let P denote the maximal perfect subfield of L and M a

relative ¿-base of L/K. Consider the properties: (1) PQK, (2) P%K,

(3) there exists an M such that L = K(M), and (4) for all M,L = K(M).

None implies the other except for (4) implies (3).

For instance, Example 1 shows that (4)-+>(l) and Example 2

shows that (4)-+-»(2). Example 2 of [4, p. 333] shows that (3)n->(4).

Letting L he perfect gives us an example showing that (2)h->(3).

We show (l)-+*(3) by giving an example constructed by E. A.

Hamann. Let K = Q(xi, x2, • • • ) and

P~*        / P\P~^ P P^ *P-'
L = K(xi   , (xi + x2)     , (xi + x2+ X!)     ,■•■),

where Q is a perfect field and Xi, x2, ■ • ■ are independent indetermi-

nates over Q. (L = K(LP) and L/Q is pure transcendental.) The

remaining implications are trivial.
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