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In [l], M. B. Balk obtains a representation for polyanalytic func-

tions which have constant modulus on some region. Balk's result

suggests the more difficult problem of obtaining necessary and suffi-

cient conditions that two polyanalytic functions have equal modulus

on some region. This problem is answered in Theorem 1 and as an

immediate corollary to Theorem 1, we obtain the result of Balk cited

in [l]. In Theorem 2 and subsequent corollaries, the question of

establishing criteria that two polyanalytic functions have equal am-

plitudes or equal real parts or equal imaginary parts is considered.

In what follows, G will denote a region of the finite complex

plane T and G* will denote the region G*= {z£r|z£G}.

Definition. A function/: G—>T is said to be polyanalytic on G or

^-analytic on G if and only if there exist n ^ 1 functions /0, /i, • • • ,

/„_i which are analytic on G such that/„_i is not identically zero on G

whenever « = 2 and such that f(z) = zZzkfk(z), for all zEG, where

k = 0, I, • • ■ , n — l and where z denotes the complex conjugate of z.

We now need the following preparatory lemma:

Lemma. Let P and Q be two nonidentically zero relatively prime poly-

nomials in two variables such that \P(z, z)\ = | Q(z, z)\, for all zEG.

Then there exists a complex constant X with | X | = 1 such that

p(z, z) = xg^l),

for all zEG.

Proof. If we let

Px(z, z) = P(z, z)    and    Qx(z, z) = Q(z, z)

for all z£r, we see that Pi(z, z) and Qx(z, z) are polynomials in s

and z and that

P(z, z)Px(z, z) = Q(z, z)Qi(z, z),

for all zEG. We now define the function F by the condition that

F(z, w) = P(z, w)Pi(z, w) — Q(z, w)Qx(z, w),

for all z, wEY. Now F(z, w) is a polynomial in z and w and F(z, w)=0

for all z, wEG which are on the manifold determined by the equation
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w = z. Hence it follows that F(z, w)=0 for all z, wEF [6, p. 41]. Thus

we see that

P(z, w)Px(z, w) = Q(z, w)Qx(z, w),

for all z, wEF. Now P(z, w) and Q(z, w) are relatively prime and

P(z, w) divides Q(z, w)Qx(z, w). Hence there is a polynomial R(z, w)

such that R(z, w)P(z, w) = Qx(z, w), for all z, wEF. Now Pi(z, w) and

Qx(z, w) are also seen to be relatively prime. Hence there is a poly-

nomial Rx(z, w) such that Rx(z, w)Qx(z, w) =P(z, w), for all z, wEF.

It then follows that R(z, w)Rx(z, w) = l, for all z, wEF. Hence there

is some constant X such that Rx(z, w) =X for all z, wEF. Thus we see

that P(z, w) =\Qx(z, w), for all z, w£r. Hence

P(z, z) = \wr$,

ior all zEG. Clearly |X| =1. This establishes the lemma.

In the sequel, we shall assume that/, g: G—*F are two functions

which are w-analytic and w-analytic, respectively, on G. Also if

P( , ) is a polynomial in two variables, let dP and 8P denote the

degrees of P in the first and second place variables, respectively.

We are now ready to state and prove Theorem 1:

Theorem 1. A necessary and sufficient condition that \f(z) \ = | g(z) |,

for all zEG is that there exist a nonidentically zero polynomial P(z, z)

in z and z such that

P(z, z)f(z) = Pjz^)g(z),

for all zEG. In the above condition we can also require that dP f± (n — 1)

and 8P^(m-l).

Proof. First it is clear that the condition is sufficient. It remains

only to show that the condition is necessary. We need only consider

the case when / and g do not vanish identically on G. In order to

abridge notation somewhat we shall assume that k = 0, 1, ■ ■ ■ , n — 1

and j = 0, 1, • • • , m — 1. Now there exist functions fk(z) and gj(z)

which are analytic on G such that/„_i and gm_i do not vanish identi-

cally on G and such that

f(z) = I>/*(0),

g(z) = J2z%(z),

ior all zEG. We then have that

Z Zkh(z) Z 2*/*©   =   Z ^3<2) Z »&(*),
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for all zEG. In the above equation it is understood that

~fk(z) = fk(z)    and    &(z) = gj(z)

for all zEG. We now introduce the auxiliary function F defined by

the condition that

F(z, w) = zZ ™kfk(z) zZ zkfk(w) - zZ wigi(z) IZ z'ii(w),

for all (z, w)EGXG*. We see that F(z, w) is analytic in z and w for all

(z, w)EGXG*. We also note that F(z, w)=0 for all (z, w)EGXG*

such that z and w are on the manifold determined by the equation

w = z. Hence it follows that F(z, w)=0 for all (z, w)EGXG* [6,

p. 41]. Thus we have that

IZ ™kfk(z) zZ z%(w) = zZ wjgj(z) zZ z'gj(w),

for all (z, w)EGXG*. Since/„_i and gm-i do not vanish identically

on G, we can find some (z0, w0)EGXG* and some r>0 such that

NiXN2 = N(z0, r)XN(w0, r)QGXG* and such that each of the four

sums in the previous equation are not zero for all (z,w) ENiXN2.

We now introduce the auxiliary function h defined by the condition

that

zZwkfk(z) £z'fy(w)
h(z, w) = -=——— = -^ — ,

2^ Wgj(z) Z-, z.tk(w)

for all (z, w)ENxXN2. The function h is clearly analytic and never

zero on NxXN2. Now for each fixed z£7Vi we see that h(z, w) is a

rational function of w and for each fixed wEN2 we see that h(z, w)

is a rational function of z. It therefore follows that h(z, w) is a rational

function of z and w [5, p. 35]. As indicated by Osgood in [5], this

result follows from the last part of Hurwitz's proof [3, p. 151] of a

theorem first stated by Weierstrass [7]. Hence there exist two non-

identically zero relatively prime polynomials R(z, w) and S(z, w)

such that S(z, w)h(z, w) = R(z, w), for all (z, w)ENiXN2. Hence

we have that

S(z, w) zZ »*/*(*) = P(z, w) lZ wigj(z),

S(z, w) JZ z'Mw) = R(z, w) zZ &Jk(w),

for all (z, w)ENiXN2. Now for all zENi, with at most a finite num-

ber of exceptions, the expressions R(z, w) and S(z, w) considered as

polynomials in w are relatively prime [2, p. 210]. Hence from the

above equations we see that SR^(n— 1) and SS^(m — 1). Similarly,

dR^(nt — 1) and dS^(n— 1). Observe also that the latter part of
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Hurwitz's proof of Weierstrass's theorem [3, p. 151 ], yields the same

estimates as above on the degrees of R(z, w) and S(z, w) with respect

to z and w. From the previous equation we note also that S(z, z)f(z)

= R(z, z)g(z), for all z£G. Hence we see that R(z, z) and S(z, z) are

two nonidentically zero relatively prime polynomials in z and z

which have equal modulus on G. Hence there is some constant X with

| X | = 1 such that

S(z, z) = \R(z, z),

for all z£r. NowX = e_2,e for some real number 6. Let P(z,z) =eieS(z,z)

for all z£T. Then P(z, z) is a nonidentically zero polynomial in z

and z such that

P(z, z)f(z) = P^T)g(z),

ior all zEG. Moreover, dP^(n — 1) and 8P^(m — 1). This completes

the proof of the theorem.

From Theorem 1, we immediately obtain the following corollary:

Corollary 1. A polyanalytic function f on G has constant absolute

value on G iff there exists some constant X and some polynomial P(z) in z

which is never zero in G such that

f(z) = \Pjz)/P(z),

for all zEG.

We also have the following companion theorem to Theorem 1:

Theorem 2. Assume that the polyanalytic functions f and g do not

vanish identically on G. Then a necessary and sufficient condition that

7Wl(8)   =/(«)«©,

for all zEG is that there exist two nonidentically zero real valued poly-

nomials A(z, z) and B(z, z) in z and z such that A(z, z)f(z) =B(z, z)g(z),

for all zEG. In the above condition we can also require that dA =8A

g(m-l) anddB = 8B^(n-l).

We omit the proof of Theorem 2 since it is similar to the proof of

Theorem 1 in all essential details.

Note that Theorem 2 can be interpreted as giving a criterion for

determining whether or not f(z) and g(z) have equal amplitudes

modulo ir at the points z of G where neither function vanishes.

As an application of Theorem 2, we offer the following corollaries:
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Corollary 1. Suppose that the polyanalytic functions f and g never

vanish on G. Then

amp/(z) = amp g(z) (modulo 2a-),

for all zEG, if and only if the following condition holds: there exist two

nonidentically zero real valued polynomials A(z, z) and B(z, z) in z and

z with AB positive for at least one point of G such that

A(z,z)f(z) = B(z,z)g(z),

for all z EG. In the above condition we can require that dA =8A^(m — l)

anddB = SB^(n-l).

Proof. From Theorem 2, it is clear that the condition is necessary.

Now assume the condition. From Theorem 2, we see that amp f(z)

= amp g(z) (modulo t) for all zEG. Let H denote the set of all points

zEG for which amp/(z) =amp g(z) (modulo 2-n-) and let K = G — H.

For ZoEG, let r>0 be such that N=N(z0, r)QG. Now there exist

continuous functions ai and a2 defined on N such that ai(z) = amp/(z)

(modulo 27r) and a2(z) =amp g(z) (modulo 27r) for all zE A [4, p. 328].

Since (ai — a2)/T is a continuous integral valued function defined on N,

this function reduces to some integral constant ko on N. If ZoEH,

then ko is even and hence NC.H. However, if z0EK, then k0 is odd

and therefore NQK. Thus we see that H and K are both open sets.

Since G is connected and H?±0, it follows that G = H. Thus the condi-

tion is sufficient. This completes the proof.

Corollary 2. Letf and g be polyanalytic on G. Thenf and g have the

same real part on G if and only if there exists a real valued polynomial

A (z, z) in z and z such that

f(z)=g(z)+iA(z,z),

for all zEG. Also f and g have the same imaginary part on G if and

only if there exists a real valued polynomial A (z, z) in z and z such that

f(z)=g(z)+A(z,z),

for all zEG.
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