SUMMABILITY OF A CAUCHY PRODUCT SERIES

JOHN SWETITS

1. Let $f(z) = \sum_{j=0}^{\infty} d_j z^j$ be analytic in the disk |z| < R, R > 1. Let $d_j \ge 0$ for $j = 0, 1, 2, \cdots$, and let f(1) = 1. The Sonnenschein matrix $D = (d_{nj})$, associated with f(z) is defined by

$$[f(z)]^n = \sum_{j=0}^{\infty} d_{n_j} z^j, \qquad n = 1, 2, \cdots$$

 $[f(z)]^0 = 1.$

Conditions guaranteeing the regularity of D have been given by Clunie and Vermes [1]. Let D' denote the transpose of D.

K. Ishiguro [3] established theorems of Abel's, Mertens' and Cauchy's type for the summability method (t_{n_k}) defined by

$$t_{n_k} = {n \choose n} r^n (1 - r)^{k-n} \qquad k \ge n$$

= 0 \qquad k < n.

The matrix (t_{n_k}) is the transpose of the Euler matrix, (e_{n_k}) , defined by

$$e_{nk} = \binom{n}{k} r^k (1 - r)^{n-k} \qquad k \le n$$

$$= 0 \qquad k > n.$$

The Euler matrix is generated by the function g(z) = 1 - r + rz, [4]. It is the purpose of this note to establish theorems of Abel's, Mertens' and Cauchy's type for the transpose of a regular Sonnenschein matrix generated by the function f(z).

2. Let the series, $\sum_{n=0}^{\infty} a_n x^n$, have radius of convergence equal to 1. The following notation is adopted from [3]. Let $a_n^* = \sum_{j=0}^{\infty} d_{j_n} a_j$. If $\sum_{n=0}^{\infty} a_n^* = A$, then we write

$$\sum_{n=0}^{\infty} a_n = A(D').$$

If $\sum_{n=0}^{\infty} a_n^*$ converges absolutely to A, then we write

Received by the editors February 20, 1969.

$$\sum_{n=0}^{\infty} a_n = A(|D'|).$$

If $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are given series, then we write

$$c_p = \sum_{m+n=p} a_m b_n \qquad p = 0, 1, 2, \cdots.$$

If $\sum_{n=0}^{\infty} (1/(n+1)) \sum_{j=0}^{n} a_{j}^{*} = A$, then we write

$$\sum_{i=0}^{\infty} a_i = A(D'; C, 1).$$

THEOREM 1. If $\sum_{n=0}^{\infty} a_n = A(D')$, $\sum_{n=0}^{\infty} b_n = B(D')$ and $\sum_{n=0}^{\infty} c_n = C(D')$, then AB = C.

PROOF. Let z_0 be real and $|z_0| < 1$. Since f(z) is analytic, the image of an interval, (α, β) , about z_0 contains an interval, (u, v), about $f(z_0)$. If $(\alpha, \beta) \subset (-1, 1)$ then $(u, v) \subset (-1, 1)$ [1].

Let $q(x) = \sum_{n=0}^{\infty} a_n x^n$ and let x = f(z) for $x \in (u, v)$ and $z \in (\alpha, \beta)$. Then

$$q(x) = \sum_{n=0}^{\infty} a_n [f(z)]^n = \sum_{n=0}^{\infty} a_n \sum_{k=0}^{\infty} d_{n_k} z^k$$
$$= \sum_{k=0}^{\infty} z^k \sum_{n=0}^{\infty} d_{n_k} a_n = \sum_{k=0}^{\infty} a_k^* z^k.$$

The interchange in the order of summation is permissible since $d_{n_k} \ge 0$ for $n = 0, 1, 2, \dots, k = 0, 1, 2, \dots$, and $\sum_{k=0}^{\infty} d_{n_k} |z|^k < 1$ if |z| < 1. Similarly we have

$$h(x) = \sum_{n=0}^{\infty} b_n x^n = \sum_{k=0}^{\infty} z^k b_k^*,$$

$$s(x) = \sum_{n=0}^{\infty} c_n x^n = \sum_{k=0}^{\infty} z^k c_k^*,$$

and q(x)h(x) = s(x) for x close to $f(z_0)$ and z close to z_0 . Thus

$$c_p^* = \sum_{m+n-n} a_n^* b_m^*.$$

The result now follows from Theorem 162 of [2].

The proof of Theorem 1 and Theorems 160, 161 and 164 of [2] yield the following results.

THEOREM 2. If $\sum_{n=0}^{\infty} a_n = A(|D'|)$ and $\sum_{n=0}^{\infty} b_n = B(|D'|)$, then $\sum_{n=0}^{\infty} c_n = C(|D'|)$ and C = AB.

THEOREM 3. If $\sum_{n=0}^{\infty} a_n = A(|D'|)$ and $\sum_{n=0}^{\infty} b_n = B(D')$, then $\sum_{n=0}^{\infty} c_n = C(D')$ and C = AB.

THEOREM 4. If $\sum_{n=0}^{\infty} a_n = A(D')$ and $\sum_{n=0}^{\infty} b_n = B(D')$, then $\sum_{n=0}^{\infty} C_n = AB(D', C, 1)$.

It should be noted that if f(0) = 0, it is sufficient to assume that $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence $\rho > 0$. In this case we can restrict z so that $|f(z)| < \rho' < \rho$. Then the interchange in the order of summation in the proof of Theorem 1 is permissible.

REFERENCES

- 1. J. Clunie and P. Vermes, Regular Sonnenschein type summability methods, Acad. Roy. Belg. Bull. Cl. Sci. (5) 45 (1959), 930-945.
 - 2. G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949.
- 3. K. Ishiguro, On the circle method of summation of a Cauchy product series, Proc. Amer. Math. Soc. 13 (1962), 695-697.
- 4. P. Vermes, Convolution of summability methods, J. Analyse Math. 2 (1952), 160-177.

LAFAYETTE COLLEGE