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1. Let/(z)= zZ'-odjZ' De analytic in the disk \z\ <R, R>1. Let

d> = 0 forj = 0, 1, 2, ■ • • , and let/(l) = l. The Sonnenschein matrix

D = (dnj), associated with/(z) is defined by

00

\f(z)Y=zZdn,z',       n=l,2,---
y-o

[/(*)]• = 1.

Conditions guaranteeing the regularity of D have been given by

Clunie and Vermes [l]. Let D' denote the transpose of D.

K. Ishiguro [3] established theorems of Abel's, Mertens' and

Cauchy's type for the summability method (tnt) defined by

t«* = (  ) rn(l - r)k~n        k^n

= 0 k < n.

The matrix (tnk) is the transpose of the Euler matrix, (ent), defined by

enk = (j rk(l - r)»-» k ^ n

= 0 k > n.

The Euler matrix is generated by the function g(z) = 1 — r+rz, [4].

It is the purpose of this note to establish theorems of Abel's,

Mertens' and Cauchy's type for the transpose of a regular Sonnen-

schein matrix generated by the function/(z).

2. Let the series, zZn=o <inXn, have radius of convergence equal to 1.

The following notation is adopted from [3]. Let a* = zZj°=o ̂ i„ai-

If zZn=oa* — A, then we write

zZan = A(D').
B=o

If zZn=o a* converges absolutely to A, then we write

Received by the editors February 20, 1969.

144



SUMMABILITY OF A CAUCHY PRODUCT SERIES 145

Z<*„ = ̂ (|D'|).
n=0

If Zn-o an and Zn°=o °n are given series, then we write

Cp =    Z   a»>bn        /> = 0, 1, 2, • • • .
m+n=P

H  Z«"-o (l/(n + l)) Ta-aaf=A, then we write

Zfly=.4(Z)';C,l).
3=0

Theorem 1. If Z»"=oOn = A(£>'), Z«"= bn = B(D') and Z"=o C
= C(D'), then AB = C.

Proof. Let z0 be real and | Zo| < 1. Since/(z) is analytic, the image

of an interval, (a, f3), about z0 contains an interval, (u, v), about/(z0).

If (a,j8)C(-l, 1) then(«,»)C(-l, 1) [l].
Let q(x)= Z.T=o anXn and let x=/(z) for x£(m, v) and zE(a, 0).

Then

00 00 00

}(*)   =   Z On[f(z)]n =   Z On Z ^Z*
n=0 '( = 0 fc=0

OO OO DO

= Z 2* Z dnka„ = Z o*z .
fc=0 n=0 fc=0

The interchange in the order of summation is permissible since d„4 = 0

forn = 0, 1,2, • • • , * = 0, 1, 2, • • ■ , and T,?.0d„k\z\k<l if |z| <1.
Similarly we have

CO 00

h(x) = Z °nx   = Z 2 **!
n-0 *=0

00 DC

•S(x)   =   Z CnX     =   Z 2 C*>
n-0 t—0

and q(x)h(x) =s(x) for x close to/(z0) and z close to z0. Thus

cP =    2j   o„om.
m-J-n=3J

The result now follows from Theorem 162 of [2].

The proof of Theorem 1 and Theorems 160, 161 and 164 of [2]

yield the following results.
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Theorem 2. If zZ^0an = A(\D'\) and zZn-o b„ = B(\ D'\), then

zZ:=0cn = C(\D'\) and C=AB.

Theorem 3. // zZn=o an = A(\ D'\) and zZLobn = B(D'), then

zZZ=oCn = C(D') and C = AB.

Theorem 4. // zZ,*=oan = A(D') and zZ,n=obn = B(D'), then

E;=0 Cn = AB(D', C, 1).

It should be noted that if/(0)=0, it is sufficient to assume that

y,r=n QBx" has radius of convergence p>0. In this case we can re-

strict z so that \f(z)\ <p'<p. Then the interchange in the order of

summation in the proof of Theorem 1 is permissible.
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