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A. J. HOFFMAN

1. Introduction. A polyhedron P is the intersection of a finite

number of closed half-spaces of a finite-dimensional Euclidean space.

We do not exclude the possibility that P is empty or that P is the

whole space. Suppose a polyhedron P is covered by a finite number of

closed convex sets Cx, • • • , Ck. Then it is intuitively plausible that,

if one or more of the Cj is "round" (i.e., not a polyhedron), then each

Cj could be replaced by a subpolyhedron and P would still be covered.

The purpose of this note is to verify this intuition, and to show its

relevance to a class of sufficient conditions for a rectangular matrix

to be of full rank.

We are very grateful to Michael Rabin, both for proposing the

problem and for other valuable conversations on related topics.

2. Theorem. Let Clt ■ ■ ■ , Ck be closed convex sets, P a polyhedron,

P = CiW • • -\JCk. Then there exist polyhedra PjECj, j=l, • ■ ■ , k

such that P = PiU • • • \JPk.

Proof. We prove the theorem by induction on dim P (i.e., the

dimension of the lowest dimensional flat containing P). The theorem

obviously holds if dim P = 0 or 1, so assume dim P = « and that the

theorem has been proved for all P such that dim P<n.

In the argument that follows we shall make use of the following

well-known facts:

(2.1) The convex hull of a finite number of polyhedra is a poly-

hedron;

(2.2) If Q and R are polyhedra, the closure of Q — R is the union

of a finite number of polyhedra.

Our first step is to partition the space R" containing P into closed

orthants Qx, ■ ■ ■ , (?2». Clearly each Pr\Qj=(CxC\Qj)^J ■ ■ ■

\J(Ckf~\Qj), j=l, ■ ■ ■ , 2". If we prove the theorem for each Pf~\Qj,

then the theorem for P follows from (2.1). Hence we may assume P

contained in a closed orthant, which we may take without loss of

generality to be the first orthant. Therefore

(2.3)    x = (xi, • • • , xn) £ P    implies    Xj = 0,       j = 1, • • • , n.
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By the definition of dim P, P has nonempty interior. We use the

symbol \S\ to denote the number of elements in the set 5. For any

covering <3— {G, • • • , Ck} of P we define the complexity 3C(C, P)

to be the ordered pair (r, s), where

r= | {j| Int PHC;^0} |,

s = | {sc {i, • • ■ ,k} |intpn n Cj*0}\.

Further, we establish a linear order among the complexities of all

coverings C of all w-dimensional polyhedra P by defining 3C(C', P")

= (r', s')<X(e", P") = (r", s") if

r' < r",    or    r' = r",        s' < s".

Observe that r= 1 implies 5 = 1. For 3C(6, P) = (1, 1), the theorem is

obvious, for if Int PEC, for some j, then P = C, because Cj is closed.

We now proceed by induction on X(Q, P).

Assume that JC(C, P) = (r, s), and the theorem has been proved for

all preceding complexities. Clearly r^s^2r —1, r>l.

Case 1. Assume s<2r— 1. Then there exists a nonempty subset

SE {1, • • ■ , k} and an index m such that the convex sets K — Int P

/Afbes Cj^0 and L = Int PC\Cm9^0 satisfy KC\L = 0. They can
therefore be weakly separated; i.e., there exists a nonzero vector a

and a constant 6 such that

(2.3)        HK = {x| (a, x) > b}    and    HL = {x| (a, x) < b}

satisfy iJx/AX = 0, HLC\L = 0.
Let PK=Pr\c\osure of tfK, PL = PP\closure of HL, QK = { CxI^Pk,

■ • • , Ckr\PK}, eL= {CxC\Pl, ■ ■ ■ , CkC\PL}. Let (r, s) = X(&, P),

(rK, sK) = X(eK, PK), (rL, sL) = X(eL, PL). From (2.3), rK^r, sK<s

(since Int Pr\f]j€S C^0, but Int Pir/^fW (C/\P*)=0)), and
rL<r (since Int PC\Cm^0, but Int P if\(CJT\P l) = 0). It follows
from the induction hypothesis on complexity that there exist poly-

hedra PkjECjC^PkCCj, j = l,---,k and P/.yCC/'YPiCCy, j
= 1, • ■ • ,k such that PX = PXAJ • • • UPKi, Pl=Plx^> ■ ■ ■ WPM.

The theorem now follows from (2.1).

Case 2. Assume s = 2r— 1. Without loss of generality, we may as-

sume r = k, and it follows that D = fl*.i Cjj&0.
Case 2a. Assume D bounded. Let E be any bounded polyhedron

(if P is bounded, take P = E) such that DEE, and let x be an arbi-

trary point in D. Then PC\E is a bounded polyhedron with faces

Fi, ■ • ■ , Fj. Clearly each F, = U*_i FiC\Cj. Since dim F{<n, our

induction hypothesis on the dimension shows that for each i there



1969] COVERING OF POLYHEDRA BY POLYHEDRA 125

exist polyhedra P,y such that PijEFiC\CjECj, j=l, ■ • • , k, with

Fi = Uj=x P^. Because P(~\E is bounded, each point of PC\E is on a

line segment joining x to a face of P(~\E. Let Pj be the convex hull of

x and all Pi}, i=l, • • • , /. Then PC\E = U*_i Pj and PjECj, j
= 1, •• •, n.

Now the closure of P — (P(~\E) is by (2.2) the union of polyhedra,

say Qx, • • • , Q,. Each A is covered by {Qi(~\ Cx, • • ■ , QiC\ Ck}, and

the complexity of each such covering of each (?,- precedes 3C(C, P),

since DC^lnt Qi = 0 for each i. Thus the induction hypothesis on

complexity proves the theorem for each Qt and we now apply (2.1).

Case 2b. Assume D unbounded. Then D contains a ray i.e., there

is a point x and a vector t such that x+\tED for all X2:0. Call this

ray R and note that R is a polyhedron contained in each Cj. Since

DEP and P is in the first orthant, it follows that

(2.4) xt =■ 0       i = 1, • • • , n.

(2.5) *,■ = 0       i = 1, ■ • • , n,       at least one d > 0.

(2.6) bdry P is nonempty.

By the induction hypothesis on dimension, if Fx, • ■ • , Ff are the

faces of P, there exist polyhedra Pij, i=l, ■ ■ ■ ,f;j=l, ■ • ■ , k, such

that PijECj, j=l, • ■ ■ , k, U*,! Pij= Fi- Let Pj be the convex hull of

R and all Py, i= 1, • • • , n. Clearly P,ECj, and all we need show is

that every point of P is on a line segment joining a point of R with a

point on bdry P.

Let y = (yx, • • • , y„) £P. From (2.5) there exists a point r

= (»"i, • • • , rn)ER and an index i0 such that r,0>y,0.

Consider the pointy (a) = (1/(1— a)) (yx—arlt • • •, yn—ar„), which

is a continuous function of a. When a = 0, y(a)= y. When a is close to

1, since r,0>yt|), y(a) is outside the first orthant, hence outside P.

Hence there is a number a0, 0^a0<l such that y(a0)Ebdry P. Thus

y = (1 — a0)3'(«o) + aor,

which is the result desired.

3. An application. Let n>m, and let &, • • • , Cn be closed convex

pointed cones in Rn. For any nXm real matrix A, denote the rows of

A hy A{, • • ■ , An'. For any cone C and any vector x, the expression

x'OO means that x makes a positive inner product with every non-

zero yEC. In an investigation of systems of strong linear inequalities

on the rows of an nXm matrix which imply that the matrix is of full

rank, the equivalence of the following two statements was proved [l ]:
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(3.1) Aid > 0        for all i implies rank A = m

ri n

(3.2) UCiUU - d = Rm.
i=i »=i

Because of the potential usefulness of (3.1) in numerical work, it is

of some interest to find families of cones {C,} satisfying (3.2) such

that if cones P>,CC,- also satisfy (3.2) then Di=d. The reason is that

"smaller" cones prove more matrices to be of full rank. That such

minimal cones exist is an easy consequence of Zorn's lemma, as Alex

Heller has kindly pointed out to us (partial order the families of cones

satisfying (3.2) by respective inclusion, choose a maximal simply

ordered subset and form intersections). We now show that such a

minimal family of cones is polyhedral. Assume {C,} satisfying (3.2).

Since U CAJU — d = Rm, and Rm is a polyhedron, there exist poly-

hedra P„ i= ±1, ■ ■ ■ , ±n, such that PiECi, i=l, ■ ■ • , n, P_,-

E-Ci, i= -I, • • •, -«, and U?=i PAJUf=n-i Pt = Rm. Let £,- be the
polyhedral cone spanned by Pi and — P_t, i=l, • • • , n. Then

EiECi,i = l, ■ ■ ■ , n and(JEi\J(J-Ei = Rm, since PiEEi,P^xE-Ei,
*=1, • ■ ■ , n.

4. Remark. We conjecture (but have been unable to prove) the

following: Let G, • • • , Ck be closed convex subsets of a bounded

polyhedron P, and let 0<t be an integer such that every <-flat which

meets P meets Uf=i Ci\ then there exist polyhedraP<CC,-, *= L • • ■ ,k

such that every /-flat which meets P meets (JPi.
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