UPPER BOUNDS ON THE DIMENSION OF EXTENDIBILITY OF SUBMANIFOLDS IN Cⁿ

STEPHEN J. GREENFIELD

1. Introduction. Suppose K is a subset of C^n . Then $\mathfrak{R}(K)$ is the collection of all functions holomorphic in a neighborhood of K. We say that K is extendible to a connected set K' of C^n if $K \not\subseteq K'$, and the natural restriction map from $\mathfrak{R}(K')$ to $\mathfrak{R}(K)$ is onto.

In the special case that K is a submanifold, M, of C^n it is interesting to ask for "geometric" conditions on M that insure results on extendibility. Such results can be proven for C-R submanifolds of C^n . These manifolds also have interesting applications to partial differential equations. (See [1], [2], for details of what follows.)

 $T(C^n) \otimes C$ has a splitting into two equal-dimensional subbundles, $H(C^n)$ and $A(C^n)$, obtained from the complex structure of C^n . $H(C^n)_p$ is generated by $\partial/\partial z_j|_p$, $1 \leq j \leq n$, and is called the holomorphic tangent bundle of C^n . $A(C^n)$, the antiholomorphic tangent bundle, is the conjugate of $H(C^n)$ in $T(C^n) \otimes C$.

If M is a differentiable submanifold of C^n , M is called a C-R submanifold of C^n if $H(M) = T(M) \otimes C \cap H(C^n)$ is a vector bundle. If M is a C-R manifold, then $A(M) = T(M) \otimes C \cap A(C^n)$ is also a vector bundle. $H(M) \cap A(M) = 0$, and H(M) (resp. A(M)) is involutive. The Levi algebra of M, $\mathfrak{L}(M)$, is the Lie subalgebra of complex vector fields generated by sections of A(M) and H(M). We make the assumption that the dimension of $\mathfrak{L}(M)$ is constant. Then $\mathfrak{L}(M)$ is the algebra of sections of a vector bundle V, and $V \supset H(M) + A(M)$. Let $e = \text{fiber dim}_C V/(H(M) + A(M))$. e is called the excess dimension of $\mathfrak{L}(M)$, ex dim $\mathfrak{L}(M)$.

Now max $(\dim M - n, 0) \le \text{fiber } \dim_C H(M) \le n$. If fiber $\dim_C H(M) = \max (\dim M - n, 0)$, M is called generic. There are two results:

THEOREM (NIRENBERG AND WELLS [2]). If M is a compact generic C-R submanifold of C^n , and dim $M \leq n$, then M is not extendible.

THEOREM ([1]). If M is a generic C-R submanifold of Cⁿ, and dim M > n, then M is locally extendible to a set containing a differentiable manifold N, with dim $N = \dim M + e$. If e = 0, then M is locally holomorphically convex.

(We say a set is locally extendible if each sufficiently small open subset of it is extendible. A set K is locally holomorphically convex if, for any $p \in K$, $K \cap B$ is not extendible, for B a sufficiently small open ball in C^n centered at p.)

In the following section we prove a stronger version of the second theorem above for real analytic C-R submanifolds of Cⁿ, by removing the restriction "generic" and establishing an upper bound on the dimension of local extendibility. We comment on the possibility of proving the theorem for differentiable C-R submanifolds.

Conversations with Professor Hugo Rossi during the preparation of this paper proved invaluable.

2. **Real analytic** C-R **submanifolds.** If M is a C-R submanifold of C^n , then the C-R codimension of M, C-R codim M, is dim M—fiber dim H(M). If M is generic and dim $M \ge n$, then codim M in $C^n = C$ -R codim M.

If (M, H(M)) and (M', H(M')) are C-R manifolds, a C-R map $f: M \rightarrow M'$ is a differentiable map so that $df(H(M)) \subset H(M')$. If M is a C-R submanifold of Cⁿ, the restriction of any element of $\mathfrak{X}(M)$ to M is a C-R map from M to C.

THEOREM. Let M be a nontrivial real analytic C-R submanifold of C^n (so $H(M) \neq 0$). If e = 0, M is locally holomorphically convex. If e > 0, M is locally extendible to a set containing a manifold N, with dim $N = \dim M + e$. M is not locally extendible to a set of dimension greater than dim M + e.

PROOF. Suppose M is a real analytic C-R submanifold of C^n , and dim M = k, and C-R codim M = l. Then, if we select $p \in M$, we can find $m = \frac{1}{2}(k+l)$ linear combinations S_1, \ldots, S_m of the coordinate functions z_1, \ldots, z_n so that the map $S: C^n \to C^m$ given by $S = (S_1, \ldots, S_m)$ imbeds M near p as a generic C-R submanifold of C^m . We restrict our attention to that part of M which is imbedded generically. Then (using a complexification argument due to Tomassini [3]) any real analytic C-R map $f: M \to C$ is the restriction of a holomorphic function defined in a neighborhood of S(M) in C^m .

If we suppose ex dim $\mathfrak{L}(M) = e > 0$, then ex dim $\mathfrak{L}(S(M)) = e$. We must show that M is extendible to a set L containing an (e+k) dimensional manifold. If $f \in \mathfrak{K}(M)$, then $f|_{M} \colon M \to C$ is a C-R map. So there is $f^* \in \mathfrak{K}(S(M))$ with $f^*|_{S(M)} = f|_{M} \circ S^{-1}|_{S(M)}$. f^* extends to a set L^* (since S(M) is generic) and L^* contains an (e+k) dimensional manifold. Consider now the functions $z_1, \ldots, z_n \in \mathfrak{K}(M)$. There are associated $z_1^*, \ldots, z_n^* \in \mathfrak{K}(S(M))$ which extend to L^* . We define L: P

 $=(p_1,\ldots,p_n)\in L$ when there is $q\in L^*$ with $p_j=z_j^*(q)$, $1\leq j\leq n$. By the way we constructed the map S, we see that L must contain an (e+k) dimensional manifold since L^* does. We define an extension of f to L by taking the extension of f^* and transporting back to L. By the way L was constructed this is insured to be an analytic function of z_1,\ldots,z_n .

If e=0, a similar argument will show that M is locally holomorphically convex. Or, there is also a simple complexification argument for this case.

To complete the remaining assertions of the theorem, we show that there is a real analytic C-R manifold, N, with dim N = (k+e), and ex dim $\mathfrak{L}(N) = 0$, so that

$$M \xrightarrow{i} C^n$$

$$N$$

(a diagram of C-R maps) commutes, and each map is of maximal rank (i is the natural imbedding). The germ of N at M is called the germ of the minimal flattening of M in C^n , and is unique.

How to obtain N: consider the 'abstract' complexification of M, M_C . M_C is a complex manifold with M a totally real, real analytic submanifold of M_C , and $\dim_C M_C = \dim M$. ("Totally real" means "having no holomorphic tangent vectors.") $T(M)_p \otimes C = T(M_C)_p$. We extend H(M) and A(M) to vector subbundles of $T(M_C)$, perhaps shrinking M_C as a neighborhood of M. Call these bundles H' and A'. Then A' is the conjugate of H', and H' (resp. A') is involutive. Let \mathcal{L}' be the Lie algebra generated by sections of H' and A'. Then \mathcal{L}' is a distribution of constant fiber dimension, since $\mathcal{L}(M)$ is. Let N be the union of all maximal integral submanifolds of \mathcal{L}' which intersect M. N is the desired 'locally flat' manifold. The map j is induced by z_1, \ldots, z_n on M extended to M_C and restricted to N.

(By a similar method we could also construct the minimal complexification of M in C^n —the smallest germ of a complex submanifold of C^n containing M. Something like this is also done in Tomassini [3].)

So M is a subset of a locally holomorphically convex set N (since ex dim $\mathfrak{L}(N) = 0$), with dim $N = \dim M + e$. Therefore M is not locally extendible to a set of dimension greater than dim M + e.

We can also prove a nongeneric extendibility theorem for differentiable C-R submanifolds with C-R codim = 1, using a result of Nirenberg and Wells. (Let $\alpha(K)$ be the uniformly closed algebra of functions on K generated by restrictions to K of functions in $\Re(K)$.)

THEOREM [2]. If M is a differentiable hypersurface of C^n , and $p \in M$, then any sufficiently small compact neighborhood K of p in M has the following property: the uniformly closed algebra of functions generated by restriction to K of C-R functions on M is identical with $\alpha(K)$.

We also need:

Lemma. Suppose a compact set K is extendible to a compact set K'. Then every element of $\alpha(K)$ is the restriction of a unique function in $\alpha(K')$.

Then we can get:

THEOREM. Let M be a nontrivial C-R submanifold of C^n , with C-R codim = 1. If $e = \exp \dim \mathfrak{L}(M)$ is 0, then M is locally holomorphically convex. If e = 1, M is locally extendible to a set containing a submanifold N, and $\dim N = \dim M + 1$. M is not locally extendible to a set of dimension greater than $\dim M + 1$. (Of course, e is 0 or 1.)

PROOF. Suppose dim M = k. Then, as before, we can find $m = \frac{1}{2}(k+1)$ complex-valued C-R functions S_1, \ldots, S_m so that $S = (S_1, \ldots, S_m)$ is a C-R imbedding of M as a hypersurface of C^m near some point $p \in M$. If e > 0, then S(M) is extendible to a set L^* containing a (k+1) dimensional manifold. To transport L^* back to C^n , proceed as in the real analytic case, but use the preceding theorem and lemma instead of the complexification argument.

The function $z_j|_{M}(1 \le j \le n)$ is a C-R function; by restricting to a suitable compact neighborhood of p, we can find extensions z_j^* of z_j (considered on S(M)) to some compact subset of L^* containing a C^m -open set. These values of z_j^* furnish the desired subset L of C^n , and the extension of any function to L is obtained in the obvious way.

Since we see that functions in $\mathcal{K}(M)$ are locally approximable on M (in small enough compact sets) by analytic functions in C^m , M is not locally extendible to a set of dimension greater than m.

If e = 0, then the theorem is given in [1].

Some points worthy of further investigation should be noted. Can the theorem of Nirenberg and Wells (closure of C-R functions = $\mathfrak{C}(K)$) be generalized to higher codimensional submanifolds? Then we could prove theorems similar to the above in higher codimension. If a submanifold is locally holomorphically convex (resp. extendible to a set of dimension at most k) is it holomorphically convex (resp. extendible to a set of dimension at most k)? This is a higher codimensional analogue of the Levi problem, and seems to be difficult.

REFERENCES

- 1. S. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola. Norm. Sup. Pisa 22 (1968), 275-314.
- 2. R. Nirenberg and R. O. Wells, Approximation theorems on differentiable submanifolds of a complex manifold, Trans. Amer. Math. Soc. 142 (1969), 15-35.
- 3. G. Tomassini, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d'una varietà complessa, Ann. Scuola Norm. Sup. Pisa 20 (1966), 31-44.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY