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There are a number of results known which state that a solution

u of an elliptic differential equation

(1) Au = 0

which has an isolated singularity at a point PER" may be expressed

as the sum of a derivative of the fundamental solution of A and a

solution of (1) regular at p, providing that u satisfies one of various

conditions limiting its growth near p (see for example F. John [2] or

R. Seeley [7]). The main conclusion of this note is a representation

of any solution of (1) with an isolated singularity at p which makes

no assumption on the behavior of u near the singularity; the repre-

sentation is in terms of a (real) analytic functional supported on {p}

applied to the fundamental solution. This result is in the spirit of the

work of J. L. Lions and E. Magenes [3] on elliptic boundary value

problems with analytic functionals as data.

Actually with our method it involves no additional difficulty to

obtain the representation when u is singular on a compact set KERn

—that is, when u is a solution of (1) on ft~A, where ft is some open

connected neighborhood of K in Rn. We may suppose without loss

of generality that d& is smooth and that u is C00 on 0~A, because any

neighborhood of K contains a smaller neighborhood for which this

will be true. We assume that A is a properly elliptic differential

operator (as defined by M. Schechter in [6]) of order 2m whose coeffi-

cients are analytic on H. Let 7 be a two-sided fundamental solution

for A on 9.; more explicitly, if T: D(fi)—»S(!2) is defined by

T<p(x) =   I  dx'y(x, x')<p(x'),
J a
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then

(2) TAd, = ATd, = d>

for all 0GSD(fl)- The existence of such a fundamental solution was

proved by B. Malgrange in [4],

To specify the notation we review in this paragraph the terminol-

ogy of analytic functionals (see A. Martineau [5] for details). We

define the space of functions Q,(V) analytic on an open set V in Rn

as the inductive limit as e—>0 of the space of functions on V whose

power series about any point converges in a ball of radius e. That is,

if e>0, let

\\4>\\. = sup sup (al)~leM | D"d>(x) \ ,
xeV    a

where a is a multi-index exponent for the differentiation operator D;

let

Q(V;e) = {* G S(7) | M|. < °°}

and give it the norm topology; and finally let

a(V) = indlima(F; e).
e->0

In the usual way, the space of functions <2(PJ) analytic on a closed

set K is defined as the inductive limit of the space of functions ana-

lytic on some neighborhood V of K as V decreases to K. A (real)

analytic functional supported on K is a continuous linear functional

on Ot(K), an element of the dual space d'(K).

We remark that the fundamental solution for A is analytic, because

A has analytic coefficients. Thus if xG^~P> then Dxy(x, -)Gft(P)

for any multi-index a, and the difference quotients for these deriva-

tives converge in the topology of Q,(K). In particular,

Ay(x, ■) = 0 G a(K)

for xG^~P- If PGft'(P), we denote by P[y] the function

(3) v(x) = T[y(x, •)]        (xGO~P).

It is readily shown by an exchange of limits that ^4t; = 0. We state

now our main theorem.

Theorem 1. If u is a solution of (1) on i2'~P, then there is an analytic

functional T supported on K such that u — T[y] is the restriction to

fl~-P of an (analytic) solution of (1) defined on 12.
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Before we prove the theorem we introduce a space of solutions on

A of the adjoint equation and we construct,from u a certain linear

functional on this space which characterizes the singularity of u on

A.3 Let

3(K) = {#ea(JQUV-o},

and give it the relative topology. If 0 is a smooth function on Q~A

such that A<pELl(Q,~K) and if ypE$(V) [that is, the kernel of A*

in &(V), where F is some neighborhood of A], let p be a 6°° function

supported in V that is identically one near A and define

(4) B[<b,+]=f    dx{<bA*(p+) - rtA<p}.

Since A*(jnf/) has compact support, the possibly troublesome first

term of the integral in (4) is well defined. The integral is independent

of the choice of p because the difference of two possible choices is a

test function supported in Sl^K, permitting an integration by parts.

For each V the functional B[<p, • ] is continuous on g(V), so B[<p, • ]

Eg'(K) by inductive limits. The functional B[u, ■] specifies the

boundary data of u on dK in the sense of equation (6) below.

Suppose w is a smooth function on 0 such that A*w vanishes in a

neighborhood F of K; choose p as in (4) and let f = 1 — p, so that f is

a C°° function vanishing near K. Consider the integral

(5) f    d*{«A*w-wA«}=f    dx{uA*(Pw) - pwAu}

+ I      dx{uA*(£w) — $wAu};
J a~K

the first term on the right in (5) is simply B[u, w], while the second

reduces to a surface integral by Green's theorem. Hence

/. 2m-l     /. / d V
dx{uA*w — wAu} = B[u, w] + XI        do-[ — 1 uDjW,

a~K i-a J aa     \dv/

where d/6V denotes the exterior normal derivative and Dj is a differ-

ential operator of order 2m— j— 1 for which dQ is noncharacteristic.

Proposition 2. If u is a solution of Au = 0 on ft'~A, then u is the

restriction to fi-^'A of a solution on ft if and only if B[u, ■]= 0.

8 This procedure is very suggestive of the duality considered by A. Grothendieck

in [l ] and by others.
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Proof. If u extends to a solution of (1) on 12, then an integration

by parts in (4) checks that B [u, • ] = 0. Conversely, suppose that

B[u, ■ ] =0; we show that an extension of u to £1 may be obtained as

a solution u' of the Dirichlet problem, Au' = 0 in 12, whose Dirichlet

data on d!2 coincides with that of u. A solution u' exists, for if w is

any solution of the adjoint equation A *w = 0 with homogeneous data,

then by (6)

E I    da[ — )uDjW = 0;

that is, the data is orthogonal to any solution of the adjoint equation,

so a solution exists according to the Fredholm alternative.

Let N denote the finite-dimensional space of solutions of (1) on 12

with vanishing Dirichlet data. If /G2)(12~P) is orthogonal to N,

choose w so that A *w =/ and w has homogeneous data. Then again

by (6)

/dxu'A*w = E I    d<rI — \u'Dflv=  I      dxuA*w,
a-K j=o-> dn     \dv/ J a~K

thus

I  dx(u - u')f = 0.

Hence (u—u') is orthogonal to any vector in N1, so u differs from «'

by an element of N which may be added to u' to obtain the desired

extension.

Proof of theorem 1. Suppose u is a solution of (1) on 0~PJ. For

xGf2~P we define the function

v(x) = B[u, y(x, ■)].

By the Hahn-Banach theorem B[u, •] may be extended from 3(K)

to a linear functional P on &(K), so v is of the form P[7]. As we re-

marked before Theorem 1, Av = 0; we show below that B[v, ■]

= B[u, ■ ]. Hence by the proposition u—v is the restriction to ft~PJ

of a solution of (1) on 12.

If ^G^J(P),

B[v,w] = J dxv(x)A*[pw(x)] =  \dxT[y(x, -)]A*[Pw(x)]

= T^dxy(x,-)A*[fiW(x)}^ ,
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since the fact that A*(pw) has compact support in 12~P implies that

the integral converges in the topology of Q,(K). Thus

(7) B[v,w] = T[T*A*(pw)],

where F*<p(x) =fdx'y(x', x)<p(x'). It is obvious from (2) that F*A*<p

= A*F*d>=d> for all d>E35(12); moreover, since p = l near K, F*A*(pw)

= w near K. Therefore from (7), B[v, w] = T[w] =B[u, w], where the

final equality follows from the observation that wE$(K). This com-

pletes the proof.

We remark in closing that a similar representation for a solution

of the inhomogeneous equation Au =f can be proved quite simply

with our methods.
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