A NOTE ON THE REPRESENTATION OF A SOLUTION
OF AN ELLIPTIC DIFFERENTIAL EQUATION NEAR
AN ISOLATED SINGULARITY!

DAVID G. SCHAEFFER?

There are a number of results known which state that a solution
u of an elliptic differential equation

1) Au =0

which has an isolated singularity at a point pE&R" may be expressed
as the sum of a derivative of the fundamental solution of 4 and a
solution of (1) regular at p, providing that u satisfies one of various
conditions limiting its growth near p (see for example F. John [2] or
R. Seeley [7]). The main conclusion of this note is a representation
of any solution of (1) with an isolated singularity at p which makes
no assumption on the behavior of # near the singularity; the repre-
sentation is in terms of a (real) analytic functional supported on { p}
applied to the fundamental solution. This result is in the spirit of the
work of J. L. Lions and E. Magenes [3] on elliptic boundary value
problems with analytic functionals as data.

Actually with our method it involves no additional difficulty to
obtain the representation when # is singular on a compact set K CR"
—that is, when % is a solution of (1) on Q~K, where @ is some open
connected neighborhood of K in R*. We may suppose without loss
of generality that dQ is smooth and that u is € on @~K, because any
neighborhood of K contains a smaller neighborhood for which this
will be true. We assume that 4 is a properly elliptic differential
operator (as defined by M. Schechter in [6]) of order 2m whose coeffi-
cients are analytic on &. Let v be a two-sided fundamental solution
for A on Q; more explicitly, if I': D(Q)—>&(RQ) is defined by

r(x) = f dx'y(x, )6 (x'),
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then
(2 T'A¢ = AT¢ = ¢

for all ED(Q). The existence of such a fundamental solution was
proved by B. Malgrange in [4].

To specify the notation we review in this paragraph the terminol-
ogy of analytic functionals (see A. Martineau [5] for details). We
define the space of functions @(V) analytic on an open set V in R*
as the inductive limit as e—0 of the space of functions on V whose
power series about any point converges in a ball of radius e. That is,
if €>0, let

¥l = sup sup (a!) el | De¢(x) | ,

where a is a multi-index exponent for the differentiation operator D;
let

a;o = {veem|[v. < =}
and give it the norm topology; and finally let
(V) = indlim @(V; ¢).

«—0

In the usual way, the space of functions @(X) analytic on a closed
set K is defined as the inductive limit of the space of functions ana-
lytic on some neighborhood V of K as V decreases to K. A (real)
analytic functional supported on K is a continuous linear functional
on G(K), an element of the dual space @'(K).

We remark that the fundamental solution for 4 is analytic, because
A has analytic coefficients. Thus if x&EQ~K, then Diy(x, -)Ea@(K)
for any multi-index «, and the difference quotients for these deriva-
tives converge in the topology of @(K). In particular,

Av(x, -) = 0 € a(K)
for x€Q~K. If TE@'(K), we denote by T[y] the function
3) v(#) = Th(x, )] (@EQL~K).

It is readily shown by an exchange of limits that Av=0. We state
now our main theorem.

THEOREM 1. If u zs a solution of (1) on Q~K, then there is an analytic
functional T supported on K such that u—T[y] is the restriction to
Q~K of an (analytic) solution of (1) defined on Q.
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Before we prove the theorem we introduce a space of solutions on
K of the adjoint equation and we construct from u a certain linear

functional on this space which characterizes the singularity of % on
K3 Let

I(K) = {y € a(K) | A% = 0},

and give it the relative topology. If ¢ is a smooth function on @~K
such that A E L (Q~K) and if y Eg(V) [that is, the kernel of 4*
in @(V), where V is some neighborhood of K], let p be a €= function
supported in V that is identically one near K and define

) Blo, ¥] = fﬂ dx{o4*(pb) = pi o).

Since 4*(py) has compact support, the possibly troublesome first
term of the integral in (4) is well defined. The integral is independent
of the choice of p because the difference of two possible choices is a
test function supported in 2~XK, permitting an integration by parts.
For each V the functional B[, -] is continuous on g(V), so B, - ]
€49'(K) by inductive limits. The functional B[«, -] specifies the
boundary data of # on dK in the sense of equation (6) below.

Suppose w is a smooth function on @ such that 4*w vanishes in a
neighborhood V of K; choose p as in (4) and let { =1—p, so that { is
a C~ function vanishing near K. Consider the integral

(5) dx{uA*w - wAu} = dx{uA*(pw) — pwAu}
@K a~K

+ dx{uA*(;‘w) — twAu};
QK

the first term on the right in (5) is simply B[«, w], while the second
reduces to a surface integral by Green’s theorem. Hence

2m—1 o\7
(6) dxfud*n — wAu} = Blu,w] + 2 | do (——) uDjw,
oK i=0 J ag v
where 9/9dv denotes the exterior normal derivative and D; is a differ-

ential operator of order 2m —j—1 for which 02 is noncharacteristic.

PROPOSITION 2. If u is a solution of Au=0 on Q~K, then u is the
restriction to @~K of a solution on Q if and only if Blu, - |=0.

® This procedure is very suggestive of the duality considered by A. Grothendieck
in [1] and by others.
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PRroOF. If u extends to a solution of (1) on £, then an integration
by parts in (4) checks that B[«, -]=0. Conversely, suppose that
Blu, -]=0; we show that an extension of # to @ may be obtained as
a solution #’ of the Dirichlet problem, Au'=0 in @, whose Dirichlet
data on 9Q coincides with that of «#. A solution %’ exists, for if w is
any solution of the adjoint equation 4 *w =0 with homogeneous data,
then by (6)

m—1 a J
Z do <—) uDjw = 0;
=0+ o v

that is, the data is orthogonal to any solution of the adjoint equation,
so a solution exists according to the Fredholm alternative.

Let N denote the finite-dimensional space of solutions of (1) on Q
with vanishing Dirichlet data. If fED(Q~K) is orthogonal to N,
choose w so that 4*w=f and w has homogeneous data. Then again

by (6)

m—1 9 J
deu' A*w =Y, | do (—) w'Djw = dxuAd*w,
9K

(1294 j=0v 3Q 14

thus
fdx(u —u)f =0.

Hence (u—u’) is orthogonal to any vector in N4, so # differs from »’
by an element of N which may be added to #’ to obtain the desired
extension.

PRrROOF OF THEOREM 1. Suppose # is a solution of (1) on Q~K. For
xEQ~K we define the function

v(x) = Blu, v(x, -)].

By the Hahn-Banach theorem B[u, -] may be extended from g(K)
to a linear functional T on G(K), so v is of the form T'[y]. As we re-
marked before Theorem 1, 4v=0; we show below that B[y, -]
=Bu, - ]. Hence by the proposition % —v is the restriction to Q~K
of a solution of (1) on Q.

If wey(kx),

Blv, w] = fdx v(x) A*[pw(x)] = fdx Tlv(z, -)] A*[pw(x)]

- T{fdx y(z, -)A*[pw(x)]} ,
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since the fact that 4 *(pw) has compact support in @~K implies that
the integral converges in the topology of @(K). Thus

(7 Blv, w] = T[M*4*(ow)],

where T'*¢(x) = [dx'y(x', x)¢(x’). It is obvious from (2) that I'*4 *¢
=A*T*p =¢ for all p E D(Q) ; moreover, since p=1 near K, I'*4*(pow)
=w near K. Therefore from (7), By, w]=T[w]=B[u, w], where the
final equality follows from the observation that w&g(K). This com-
pletes the proof.

We remark in closing that a similar representation for a solution
of the inhomogeneous equation Au=f can be proved quite simply
with our methods.
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