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In [l], Davenport and Polya have considered the following prob-

lem. If y^Pr xr and XI<Zr'xr are two series with positive coefficients

and if

(1) ( E P'r *') ( XI Qr *r)   =   XI Wi X"

then what conditions will ensure that the coefficients W'T shall be

logarithmically convex? We say that IF/ is logarithmically convex if

(2) (HV)2 ^ WUWi+i,        r =1,2,3, ■■ -.

If

(3) Pr =  pi/ar,

(4) q, = qll0r,

a(a+l) ■ ■ ■ (a + r-l)
(5) <*r  = - I
K 1-2-3 ■ ■    r

o      0(0+1) ■■■(0 + r- 1)
(6) 0r  = - >
V 1-2-3 • • • r

a>0, 0>O, a+/3 = l and if pr and qr are both logarithmically con-

vex then Davenport and Polya have proved in [l], that lFr is log-

arithmically convex, where

IF, = aopo0rqr + axpx0r-xQr-x + ■ ■ • + arpr0oqa-

It must be noted that the result of Davenport and Polya is false with

the omission of the weights ar and 0r as defined in (5) and (6) respec-

tively. In this paper we prove a similar result for logarithmically

concave sequences.

Definition. A sequence {ar} is said to be logarithmically concave

if

ar ^ ar-xar+x,        (r = 1, 2, 3, • • • ).

Evidently a positive sequence is logarithmically concave if and only

if it satisfies the relations
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ax/ao ^ a2/ax ^ a3/a2 =■  • • • .

Theorem. Let {pr} and {qT} be positive logarithmically concave

sequences with p0 = qo=l- Then the sequence {Wr} is also logarthmically

concave, where the Wr are defined by the product of formal power series

(7) £,W#'   =   (itprX')(itqrX').
r-0 \ r=0 /   \ r=0 /

Proof. Since (^prX')(^qrxT) = ^JFrxr, we have

(8) JFr = E Pr-jqj.
j-o

From (8) substituting the values of Wr we have

iFr2 - iFr_,iFr+i = ( e pr-jq}) (e Pr-^X

~ ( Upr-i-jqM EAm-W?/)
\ j=0 /   \ j-0 /

or

Wl -   Wr-xWr+X   =  ( E Pr^}) ( E Pr-^x)

(9) - ( E pr-i-xM E Pr+i-xqx)
\ j=0 / \ X-0 /

r r-1

+ }rZ pr-\q\ — qT+i E pr-x-xq\-
X=0 X=0

Now the right side of (9) can be written as 1 + 11 + 111 where

r-l     r

I   =   E E QiQx(pr-jpr-\  ~  pr-X-jpr+X-\)
y=0 X=l

r-l

II   =   E QjloiPr-lPr  —  p,-X-jpr+x)
J=0

r r-l

III  =   qT E #r-X?X  —  ?r+l E Pr-l-\q\-
X=0 X-0

Now III may be rewritten as

r-l

P'lr + E Px(qrqr-\ — qr+1qr-i-\)
x=o
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and the expression in the parenthesis is nonnegative by the concavity

hypothesis. Thus III jgO. In the same manner it can be proved that

11^0.
We regard I as a sum of terms arranged in an rYr matrix (Fyx)>

with the unusual but understandable indexing O^^r — 1, l=^h = r:

Tp-  =   1i<fr(Pr-iPr-h  —  pr-X-jPr+X-\)-

The diagonal of this matrix is the set of terms F/,,+i, where 0 ^j

±£r — 1, and it is clear that all terms on the diagonal vanish. A simple

calculation shows that each pair of terms symmetrically positioned

with respect to the diagonal has nonnegative sum. Now I + II + III

^0 and the theorem is established.

I wish to record my sincere thanks to the referee for suggestions

which led to a better presentation.
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