ON A THEOREM OF GOFFMAN AND NEUGEBAUER
A. P. BAISNAB

1. Suppose that a function f is defined in an open interval of which
Iy=[a, b] is a closed subinterval. In this paper we prove Theorem 2’1
and Theorem 3’2 as two generalizations of the following theorem due
to C. Goffman and C. J. Neugebauer [1].

THEOREM 1'1. Suppose that (i) f has an approximate derivative
fap 1 Lo, and
(ii) fap(x) 20 for all x in I,. Then f is monotone increasing in I,.

For definitions and notations used, please see S. Saks [3, p. 220].
Unilateral approximate semicontinuity of f is defined in a natural
way.

2. THEOREM 2'1. If (i) f is approximately upper semicontinuous
(a.u.s.c.) on the left, and approximately lower semicontinuous (a.l.s.c.)
on the right at each point of I, and

(i) Int{f(E)} =, where E={x: f},(x)<0}, then f is monotone
increasing in I, )

ProoF. Let there exist two points ¢, d in I,, with ¢<d, such that
f(e)>f(d). We seek a contradiction. Since Int{f(E)} =, f(E) does
not contain an interval, and, therefore, we can find a number 5 such
that f(c) >n>f(d) and

(2'1) 1€ f(E).

We now construct a point £ in E such that »=f(§). This will be the
desired contradiction. Let G= {x: f(x)gn}. Then ¢&G. Since f is
a.ls.c. on the right at ¢, it follows that the set {x: f(x) >7}, and hence
G has right-density unity at ¢. Therefore, we can find a point x; in
G, with x;>¢, such that

p{G N (C, xl)} 1

22 _—
( ) X1 —¢C _‘2

Now we adopt a technique due to Goffman and Neugebser [1], and
proceed as follows.
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Let 3C denote the family of all subsets H of G having the following
property: If x;, xa & H, and x; <x,, then

wlGN @, w)} 1

2'3
( ) X2 — X1 2

3¢ is not empty, since from (2'2) it is evident that H= {c, x,} belongs
to 3¢. We now partially order 3 by set-inclusion. It is easily verified
that every chain in 3C has an upper bound in 3¢. By Zorn’s Lemma,
we conclude that 3¢ has a maximal member H,, say. Let

(2'4) E= sup{x: x € Ho}.

If x belongs to Hy, and if x <&, we shall show that

2 -
(2'S) PR 5

(%

From (2’4) it follows that we can find a sequence {x,.} of points of
H, and that x <x,<§, and x,—¢_. From (2’3) we have

won sl 1

Xn — X 2

v

Taking the limit as #— 0, we have

E—x 2
Thus (2’5) has been established. Suppose that §&H, Then (2’5)
implies that G has no zero left-density at £ Since G= {x:f(x) gn}
and since f is a.u.s.c. on the left at £, it follows easily that n<f(§).
If §&H,, then £EG and again n=<f(£). Suppose that n<f(£) then
since f is a.l.s.c. on the right at £, we conclude that G = {x: f(x) =9}
has right density 1 at £. So, we choose x EG such that x>§, and

6N o) 1

x — & 2

v

Since H, is maximal w.r.t. the property (2’3), and x& H,, there exists
ho& Hy such that

X — ho 2
Clearly, hy<&. From (2'5) we have

- WG o9} _ 1
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p{G N (ho, £)}
£—ho

v

1
2
Then we have

p{G N (e, 2)}  w{GN (he, ®} +u{GN (& )}

x—ho x—]’lo
M- Fie—p 1
= x—}lo 2

This contradicts (2°6), and we conclude that
(2'7) 1 = f(§).
Finally we show that £E€E. In fact,

(2'8) jol®) = timinfap L2 —SE.
= PR x— £
Using (2'7) we observe that
, @ —f®
(2'9) {x.x>£,———x_f >0}§G.

Since G has no unit right-density at £ (by the above argument),
neither has the set on r.h.s. of (2'9). Now (2’8) shows immediately
that f3,(§) <0, i.e. £EE. We have arrived at the final contradiction,

and the proof of the theorem is complete.

3. TueoreM 3'1. Suppose that (i) f is a.u.s.c. on the left everywhere
in Iy, and
(ii) f;;,(x)go for all x in I,. Then f is monotone increasing in Io.

PRroOF. Let x; and x, be two points in I, with x; <x,. We shall show
that f(x2) =f(x1). Without loss of generality we assume that x;=a
and x.=b. Let ¢ with ¢>0, be given. Consider the set G*
= {x:f(x) —f(a) = —e(x—a) } Now we construct the point £* with
the help of the set G* exactly in the same way as we construct the
point £ in Theorem 2’1. It is also established as in Theorem 2’1 that
G* has no zero left-density at £*. Since f is a.u.s.c on the left at £*,
it follows easily that £*€G*. Clearly £*<b. Suppose that £*<b. Since
fa(£) 20, we can find xEG*, with x>£*, such that

slG*N @ o)) 1
x — E* =2
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Now we offer a contradiction argument similar to that which has
been used to established (2’7) in Theorem 2’1. We thus conclude that
£*=p. This gives, since £*&G*, f(b)—f(a) = —e(b—a). Since € is
arbitrary, we have f(b) Zf(a). This completes the proof. The following
theorem is a generalization of Theorem 3'1.

THEOREM 3'2. If (i) f is a.u.s.c on the left everywhere in I,

(ii) i;"p(x) =0 almost everywhere in I,, and

(iii) fh(x)> — o everywhere in Io, then f is monotone increasing in
I,

Proor. Let E= {x: f},(x)<0}. By hypothesis (ii) u(E) =0. By a
theorem [4, p. 214] there is a continuous increasing function ¢ in I,
such that ¢’'(x) =4  for xEE. Let ¢, with ¢>0, be given. Consider
the function ¥ defined on I, by: Y (x) =f(x) +eo(x). Then we have the
following:

(i) ¥ is a.u.s.c on the left everywhere in [, and

(ii) Yrap(x) =ftap(x) +e0t,5(x) =0 for all x in Io. Hence, by Theo-
rem 3’1 ¢ is monotone increasing in I,. Since € is arbitrary, we con-
clude that f is monotone increasing in I,. The proof is complete.

We wish to point out hypothesis (iii) in Theorem 3’2 is not re-
dundant. The following example illustrates this.

Let

flx) =2« f0=x=1
=1 ifl<x=2.

f satisfies all the conditions of Theorem 3’2 except at x=1, where
ftap(x) = — ». f is not monotone increasing in [0, 2].

4. Referring to Theorem 2’1 we want to estimate how large the
exceptional set { x: flap(x) éO} may be without making the theorem
false. In this connection we recall the following theorem.

THEOREM 4’1 [2, p. 199]. Suppose that f is a measurable function
mn Io. Let

(1) S={x:fi,(x) exists, and is finite},
and

(i) T= {x: all four approximate derivates are infinite at x} Then
w{I\(SUT)} =0.

As an analogue to this we propose the following theorem.
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THEOREM 4'2. Let f be a measurable function on Iy such that

(i) Ei= {x:fl(x) exists and ;'50}, and

(ii) E,= {x: all four approximate derivates are infinite at x}, ¢hen
plf{T\(E{VEy) } ] =0.

We need the following lemmas.

LEMMA 4'1. Let f be a measurable function, and \ be a real number.
Let E={x:fi,(x)=\}. Then

p{f(E)} = | A u(E).

PROOF. By a theorem of S. Saks [3, p. 239], wecan write E=U>., E,
where f is absolutely continuous on each E, (n=1, 2, - - - ). The sets
E, may be taken to be pairwise disjoint. Since f is absolutely con-
tinuous on E,, it satisfies Lusin’s (NV)-condition on E, [3, p. 225],
and it is of bounded variationon E, (n=1, 2, - - - ). Therefore, by a
lemma of S. Saks [3, p. 221] there isa function g, which is of bounded
variation in I, such that f(x)=g.(x) for xEE,. Clearly, g/ (x)
=f.p(x) =N whenever xEE,\B,, where B, is a subset of E, with
u(B,)=0. Since f satisfies Lusin’s (N)-condition over E,, we have

#'1) ulf(Bn)} = 0.

Using a known result [3, p. 227] we have

WENBD} = wlen(ENBD} 5 [ IR PGS
En\B,
From (41) we deduce u{f(E.)} <|\| u(E.). Since E=U;>, E,, and
E, are pairwise disjoint, we have

0

(B} £ S ulfED) S [N] SaED = M| ).

n=1 n=1

IA

LEMMA 4'2. Let f be a measurable function on I, and let E' = {x: at
least one approximate derivate is finite at x}. Then f satisfies Lusin's
(N)-condition on E'.

This lemma is in S. Saks [3, pp. 290-292].

Proor oF THEOREM 4'2. Let E;= {x: f,,(x) exists, and =0}, and
E,= {x: f{,(x) does not exist, and at least one of the four approximate
derivates is finite at x } Clearly I\ (E\\JE,)C E;\UE,. Hence,
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(4'2) wlf{TNENY E))] € p{f(E9)} + w{f(Ed}.
By Lemma 4’1
(#'3) w{f(E)} = 0.

According to Theorem 4’1 E,CI\(S\UT), and hence u(E,)=0.
Using Lemma 4’2 we have

(4'4) plf(E)} = 0.
From (4'2), (4'3) and (4’4) we have u[f{I\\(E:\VE;)}]=0.

THEOREM 4'3. Suppose that f is a measurable function on I,. Let (i) f
be a.u.s.c. on the left and a.l.s.c. on the right everywhere in I,

(i) P={x: — o <flp(x) <0}, and u(P)=0, and

(i) Q= {x: all four approximate derivates are infinite with f,(x)
=—ow,and Qbe countable} . Then f is monotone increasing in Iy~

ProoF. Let H= {x:f%,,(x) £0}. Then we have
H\{I\(E:\J E»)} = HN (E;\J E,)
=HNE)YHNE,)C PUQ.
Now
wlfID} < plAE\TNEY ENY] + wlATNE Y En}]
= u[fLH\(I\(E1 Y E5))}]
by Theorem 4’2. Thus

@s) wif@} = wlf(P} + u{f(O1}.
By hypothesis (ii), u(P) =0 and by Lemma 42
(46) wlf(P)} =o.

Let us suppose that u{f(Q)} >0. Then the cardinality of Q must be
equal to that of the continuum, and hence Q is uncountable. This
contradicts hypothesis (iii). Hence we conclude that

#'7) ulf (@)} = o.

From (4'5), (4'6) and (4'7) we obtain p{f(H)}=0. Therefore
Int{f(H)} = &. An application of Theorem 2’1 now completes the
proof.
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