ON A THEOREM OF GOFFMAN AND NEUGEBAUER

A. P. BAISNAB

1. Suppose that a function f is defined in an open interval of which $I_0 = [a, b]$ is a closed subinterval. In this paper we prove Theorem 2'1 and Theorem 3'2 as two generalizations of the following theorem due to C. Goffman and C. J. Neugebauer [1].

THEOREM 1'1. Suppose that (i) f has an approximate derivative f'_{ap} in I_0 , and

(ii) $f'_{ap}(x) \ge 0$ for all x in I_0 . Then f is monotone increasing in I_0 .

For definitions and notations used, please see S. Saks [3, p. 220]. Unilateral approximate semicontinuity of f is defined in a natural way.

- 2. THEOREM 2'1. If (i) f is approximately upper semicontinuous (a.u.s.c.) on the left, and approximately lower semicontinuous (a.l.s.c.) on the right at each point of I_0 , and
- (ii) Int $\{f(E)\}=\emptyset$, where $E=\{x: f_{ap}^+(x)\leq 0\}$, then f is monotone increasing in I_0 .

PROOF. Let there exist two points c, d in I_0 , with c < d, such that f(c) > f(d). We seek a contradiction. Since $\text{Int}\{f(E)\} = \emptyset$, f(E) does not contain an interval, and, therefore, we can find a number η such that $f(c) > \eta > f(d)$ and

$$(2'1) \eta \notin f(E).$$

We now construct a point ξ in E such that $\eta = f(\xi)$. This will be the desired contradiction. Let $G = \{x: f(x) \ge \eta\}$. Then $c \in G$. Since f is a.l.s.c. on the right at c, it follows that the set $\{x: f(x) > \eta\}$, and hence G has right-density unity at c. Therefore, we can find a point x_1 in G, with $x_1 > c$, such that

(2'2)
$$\frac{\mu\{G \cap (c, x_1)\}}{x_1 - c} \ge \frac{1}{2}.$$

Now we adopt a technique due to Goffman and Neugebäer [1], and proceed as follows.

Received by the editors March 16, 1969.

Let \Re denote the family of all subsets H of G having the following property: If $x_1, x_2 \in H$, and $x_1 < x_2$, then

(2'3)
$$\frac{\mu\{G \cap (x_1, x_2)\}}{x_2 - x_1} \ge \frac{1}{2}.$$

 \mathfrak{K} is not empty, since from (2'2) it is evident that $H = \{c, x_1\}$ belongs to \mathfrak{K} . We now partially order \mathfrak{K} by set-inclusion. It is easily verified that every chain in \mathfrak{K} has an upper bound in \mathfrak{K} . By Zorn's Lemma, we conclude that \mathfrak{K} has a maximal member H_0 , say. Let

$$\xi = \sup\{x \colon x \in H_0\}.$$

If x belongs to H_0 , and if $x < \xi$, we shall show that

(2'5)
$$\frac{\mu\{G\cap(x,\xi)\}}{\xi-x} \ge \frac{1}{2}.$$

From (2'4) it follows that we can find a sequence $\{x_n\}$ of points of H_0 and that $x < x_n \le \xi$, and $x_n \to \xi$. From (2'3) we have

$$\frac{\mu\{G\cap(x,x_n)\}}{x_n-x}\geq\frac{1}{2}.$$

Taking the limit as $n \rightarrow \infty$, we have

$$\frac{\mu\{G\cap(x,\xi)\}}{\xi-x}\geq\frac{1}{2}.$$

Thus (2'5) has been established. Suppose that $\xi \oplus H_0$. Then (2'5) implies that G has no zero left-density at ξ . Since $G = \{x: f(x) \ge \eta\}$ and since f is a.u.s.c. on the left at ξ , it follows easily that $\eta \le f(\xi)$. If $\xi \ominus H_0$, then $\xi \ominus G$ and again $\eta \le f(\xi)$. Suppose that $\eta < f(\xi)$ then since f is a.l.s.c. on the right at ξ , we conclude that $G = \{x: f(x) \ge \eta\}$ has right density 1 at ξ . So, we choose $x \ominus G$ such that $x > \xi$, and

$$\frac{\mu\{G\cap(\xi,x)\}}{x-\xi} \geqq \frac{1}{2}.$$

Since H_0 is maximal w.r.t. the property (2'3), and $x \in H_0$, there exists $h_0 \in H_0$ such that

(2'6)
$$\frac{\mu\{G\cap(h_0,x)\}}{x-h_0}<\frac{1}{2}.$$

Clearly, $h_0 < \xi$. From (2'5) we have

$$\frac{\mu\{G\cap(h_0,\xi)\}}{\xi-h_0}\geq\frac{1}{2}.$$

Then we have

$$\frac{\mu\{G \cap (h_0, x)\}}{x - h_0} = \frac{\mu\{G \cap (h_0, \xi)\} + \mu\{G \cap (\xi, x)\}}{x - h_0}$$

$$\geq \frac{\frac{1}{2}(\xi - h_0) + \frac{1}{2}(x - \xi)}{x - h_0} = \frac{1}{2}.$$

This contradicts (2'6), and we conclude that

$$(2'7) \eta = f(\xi).$$

Finally we show that $\xi \in E$. In fact,

(2'8)
$$\underline{f}_{ap}^{+}(\xi) = \liminf_{x \to \xi_{\perp}} ap \frac{f(x) - f(\xi)}{x - \xi}.$$

Using (2'7) we observe that

(2'9)
$$\left\{x: x > \xi, \frac{f(x) - f(\xi)}{x - \xi} > 0\right\} \subseteq G.$$

Since G has no unit right-density at ξ (by the above argument), neither has the set on r.h.s. of (2'9). Now (2'8) shows immediately that $\underline{f}_{ap}^+(\xi) \leq 0$, i.e. $\xi \in E$. We have arrived at the final contradiction, and the proof of the theorem is complete.

- 3. Theorem 3'1. Suppose that (i) f is a.u.s.c. on the left everywhere in I_0 , and
 - (ii) $f_{ap}^+(x) \ge 0$ for all x in I_0 . Then f is monotone increasing in I_0 .

PROOF. Let x_1 and x_2 be two points in I_0 with $x_1 < x_2$. We shall show that $f(x_2) \ge f(x_1)$. Without loss of generality we assume that $x_1 = a$ and $x_2 = b$. Let ϵ , with $\epsilon > 0$, be given. Consider the set $G^* = \{x: f(x) - f(a) \ge -\epsilon(x-a)\}$. Now we construct the point ξ^* with the help of the set G^* exactly in the same way as we construct the point ξ in Theorem 2'1. It is also established as in Theorem 2'1 that G^* has no zero left-density at ξ^* . Since f is a.u.s.c on the left at ξ^* , it follows easily that $\xi^* \subset G^*$. Clearly $\xi^* \le b$. Suppose that $\xi^* < b$. Since $f_{ap}(\xi) \ge 0$, we can find $x \subset G^*$, with $x > \xi^*$, such that

$$\frac{\mu\{G^* \cap (\xi^*, x)\}}{x - \xi^*} \geqq \frac{1}{2}.$$

Now we offer a contradiction argument similar to that which has been used to established (2'7) in Theorem 2'1. We thus conclude that $\xi^* = b$. This gives, since $\xi^* \in G^*$, $f(b) - f(a) \ge -\epsilon(b-a)$. Since ϵ is arbitrary, we have $f(b) \ge f(a)$. This completes the proof. The following theorem is a generalization of Theorem 3'1.

THEOREM 3'2. If (i) f is a.u.s.c on the left everywhere in I_0 ,

- (ii) $f_{\rm ap}^+(x) \ge 0$ almost everywhere in I_0 , and
- (iii) $f_{ap}^+(x) > -\infty$ everywhere in I_0 , then f is monotone increasing in I_0 .

PROOF. Let $E = \{x: f_{ap}^+(x) < 0\}$. By hypothesis (ii) $\mu(E) = 0$. By a theorem [4, p. 214] there is a continuous increasing function σ in I_0 such that $\sigma'(x) = +\infty$ for $x \in E$. Let ϵ , with $\epsilon > 0$, be given. Consider the function ψ defined on I_0 by: $\psi(x) = f(x) + \epsilon \sigma(x)$. Then we have the following:

- (i) ψ is a.u.s.c on the left everywhere in I_0 , and
- (ii) $\psi_{-\mathrm{ap}}^+(x) \ge f_{-\mathrm{ap}}^+(x) + \epsilon \sigma_{-\mathrm{ap}}^+(x) \ge 0$ for all x in I_0 . Hence, by Theorem 3'1 ψ is monotone increasing in I_0 . Since ϵ is arbitrary, we conclude that f is monotone increasing in I_0 . The proof is complete.

We wish to point out hypothesis (iii) in Theorem 3'2 is not redundant. The following example illustrates this.

Let

$$f(x) = 2x \quad \text{if } 0 \le x \le 1$$
$$= 1 \quad \text{if } 1 < x \le 2.$$

f satisfies all the conditions of Theorem 3'2 except at x = 1, where $f_{-ap}^+(x) = -\infty$. f is not monotone increasing in [0, 2].

4. Referring to Theorem 2'1 we want to estimate how large the exceptional set $\{x: f_{-ap}^+(x) \le 0\}$ may be without making the theorem false. In this connection we recall the following theorem.

THEOREM 4'1 [2, p. 199]. Suppose that f is a measurable function in I_0 . Let

- (i) $S = \{x: f'_{ap}(x) \text{ exists, and is finite}\},$ and
- (ii) $T = \{x: all \text{ four approximate derivates are infinite at } x\}$. Then $\mu \{I_0 \setminus (S \cup T)\} = 0$.

As an analogue to this we propose the following theorem.

THEOREM 4'2. Let f be a measurable function on I_0 such that

(i) $E_1 = \{x: f'_{ap}(x) \text{ exists and } \neq 0\}, \text{ and }$

(ii) $E_2 = \{x: all \text{ four approximate derivates are infinite at } x \}$, then $\mu[f\{I_0 \setminus (E_1 \cup E_2)\}] = 0$.

We need the following lemmas.

LEMMA 4'1. Let f be a measurable function, and λ be a real number. Let $E = \{x: f'_{ap}(x) = \lambda\}$. Then

$$\mu\{f(E)\} \leq |\lambda| \mu(E).$$

PROOF. By a theorem of S. Saks [3, p. 239], we can write $E = \bigcup_{n=1}^{\infty} E_n$ where f is absolutely continuous on each E_n ($n = 1, 2, \cdots$). The sets E_n may be taken to be pairwise disjoint. Since f is absolutely continuous on E_n , it satisfies Lusin's (N)-condition on E_n [3, p. 225], and it is of bounded variation on E_n ($n = 1, 2, \cdots$). Therefore, by a lemma of S. Saks [3, p. 221] there is a function g_n which is of bounded variation in I_0 such that $f(x) = g_n(x)$ for $x \in E_n$. Clearly, $g_n'(x) = f'_{ap}(x) = \lambda$ whenever $x \in E_n \setminus B_n$, where B_n is a subset of E_n with $\mu(B_n) = 0$. Since f satisfies Lusin's (N)-condition over E_n , we have

$$\mu\{f(B_n)\} = 0.$$

Using a known result [3, p. 227] we have

$$\mu\{f(E_n\backslash B_n)\} = \mu\{g_n(E_n\backslash B_n)\} \le \int_{E_n\backslash B_n} |g_n'(x)| dx = |\lambda| \mu(E_n\backslash B_n).$$

From (4'1) we deduce $\mu\{f(E_n)\} \leq |\lambda| \mu(E_n)$. Since $E = \bigcup_{n=1}^{\infty} E_n$, and E_n are pairwise disjoint, we have

$$\mu\big\{f(E)\big\} \leq \sum_{n=1}^{\infty} \mu\big\{f(E_n)\big\} \leq |\lambda| \sum_{n=1}^{\infty} \mu(E_n) = |\lambda| \mu(E).$$

LEMMA 4'2. Let f be a measurable function on I_0 and let $E' = \{x: at least one approximate derivate is finite at <math>x\}$. Then f satisfies Lusin's (N)-condition on E'.

This lemma is in S. Saks [3, pp. 290-292].

PROOF OF THEOREM 4'2. Let $E_3 = \{x: f'_{ap}(x) \text{ exists, and } = 0\}$, and $E_4 = \{x: f'_{ap}(x) \text{ does not exist, and at least one of the four approximate derivates is finite at } x\}$. Clearly $I_0 \setminus (E_1 \cup E_2) \subseteq E_3 \cup E_4$. Hence,

By Lemma 4'1

$$\mu\{f(E_3)\} = 0.$$

According to Theorem 4'1 $E_4 \subseteq I_0 \setminus (S \cup T)$, and hence $\mu(E_4) = 0$. Using Lemma 4'2 we have

$$\mu\{f(E_4)\} = 0.$$

From (4'2), (4'3) and (4'4) we have $\mu[f\{I_0 \setminus (E_1 \cup E_2)\}] = 0$.

THEOREM 4'3. Suppose that f is a measurable function on I_0 . Let (i) f be a.u.s.c. on the left and a.l.s.c. on the right everywhere in I_0 ,

(ii)
$$P = \{x: -\infty < f'_{ap}(x) < 0\}, \text{ and } \mu(P) = 0, \text{ and }$$

(iii) $Q = \{x: all \ four \ approximate \ derivates \ are infinite \ with \ f_{ap}^+(x) = -\infty, \ and \ Q \ be \ countable \}$. Then f is monotone increasing in I_0 .

PROOF. Let $H = \{x: f_{-ap}^+(x) \leq 0\}$. Then we have

$$H \setminus \{I_0 \setminus (E_1 \cup E_2)\} = H \cap (E_1 \cup E_2)$$

= $(H \cap E_1) \cup (H \cap E_2) \subset P \cup O$.

Now

$$\mu\{f(H)\} \leq \mu[f\{H\backslash (I_0\backslash (E_1 \cup E_2))\}] + \mu[f\{I_0\backslash (E_1 \cup E_2)\}]$$
$$= \mu[f\{H\backslash (I_0\backslash (E_1 \cup E_2))\}]$$

by Theorem 4'2. Thus

(4'5)
$$\mu\{f(H)\} \le \mu\{f(P)\} + \mu\{f(Q)\}.$$

By hypothesis (ii), $\mu(P) = 0$ and by Lemma 4'2

$$\mu\{f(P)\} = 0.$$

Let us suppose that $\mu\{f(Q)\}>0$. Then the cardinality of Q must be equal to that of the continuum, and hence Q is uncountable. This contradicts hypothesis (iii). Hence we conclude that

$$\mu\{f(Q)\} = 0.$$

From (4'5), (4'6) and (4'7) we obtain $\mu\{f(H)\}=0$. Therefore Int $\{f(H)\}=\emptyset$. An application of Theorem 2'1 now completes the proof.

REFERENCES

- 1. C. Goffman and C. J. Neugebauer, On approximate derivatives, Proc. Amer. Math. Soc. 11 (1960), 962-966.
- 2. R. L. Jeffery, *The theory of functions of a real variable*, Math. Exposition, no. 6, Univ. of Toronto Press, Ontario, 1951.
 - 3. S. Saks, Theory of integrals, Warszawa-Lwow, 1937.
 - 4. I. P. Natanson, Theory of functions of a real variable. Vol. I, Constable & Co.

BURDWAN UNIVERSITY, INDIA