
ON A THEOREM OF GOFFMAN AND NEUGEBAUER

A. P. BAISNAB

1. Suppose that a function/ is defined in an open interval of which

P>= [a, b] is a closed subinterval. In this paper we prove Theorem 2'1

and Theorem 3'2 as two generalizations of the following theorem due

to C. Goffman and C. J. Neugebauer [l].

Theorem l'l. Suppose that (i) f has an approximate derivative

Zap in Io, and

(ii) /ap(x) =; Ofor all x in Io- Then f is monotone increasing in P>.

For definitions and notations used, please see S. Saks [3, p. 220].

Unilateral approximate semicontinuity of / is defined in a natural

way.

2. Theorem 2'1. // (i) / is approximately upper semicontinuous

(a.u.s.c.) on the left, and approximately lower semicontinuous (a.l.s.c.)

on the right at each point of I0, and

(ii) Int{/(P)} =0, where E= {x: /ahP(x)gO}, then f is monotone

increasing in I0.

Proof. Let there exist two points c, d in I0, with c<d, such that

f(c)>f(d). We seek a contradiction. Since Intj/(P)} =0, f(E) does

not contain an interval, and, therefore, we can find a number n such

that f(c)>v>f(d) and

(2'D vEf(E).

We now construct a point § in E such that ?7 =/(£). This will be the

desired contradiction. Let G= {x:f(x)^v}. Then eEG. Since/ is

a.l.s.c. on the right at c, it follows that the set (x:/(x) >n}, and hence

G has right-density unity at c. Therefore, we can find a point xt in

G, with Xi>c, such that

u{Gr\(c,xx)}       1
(2'2)-LLJiL ^ _ .

Xx — c 2

Now we adopt a technique due to Goffman and Neugebaer [l], and

proceed as follows.
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Let 3C denote the family of all subsets H of G having the following

property: If xi, x2£/7, and Xi<x2, then

p{gr\ (xu x2)} ^ j_

X2 — Xi 2

X is not empty, since from (2'2) it is evident that 27= {c, Xx} belongs

to 3C. We now partially order 3C by set-inclusion. It is easily verified

that every chain in 3C has an upper bound in 3C. By Zorn's Lemma,

we conclude that 3C has a maximal member Ho, say. Let

(2'4) £ = sup{x: *£#„}.

If x belongs to H0, and if x<£, we shall show that

p{Gr\(x,Z)}       1
(2'5) —--^- > — ■

i- x ' 2

From (2'4) it follows that we can find a sequence {x„} of points of

Ho and that x<x„g£, and x„—»£_. From (2'3) we have

p{GC\ (x,xn)}       1

Taking the limit as ra—> °° ( we have

M{GH (»,{)} ^   1

£ - x        =   2

Thus (2'5) has been established. Suppose that ££/Po- Then (2'5)

implies that G has no zero left-density at £. Since G= {x:/(x)^t;}

and since/ is a.u.s.c. on the left at £, it follows easily that »7g/(£).

If £EHo, then ££G and again 17g/(£). Suppose that ?7</(£) then

since/ is a.l.s.c. on the right at £, we conclude that G= {x:/(x)^t;}

has right density 1 at £. So, we choose x£G such that x>£, and

MJGnfex)} ^   1

x - £ 2

Since ff0 is maximal w.r.t. the property (2'3), and x£/Po, there exists

hoEHo such that

p{Gn(h0, x)}       1
(2'6) -5-K-^- < - ■

x — ho 2

Clearly, h0<i- From (2'5) we have



1969] THEOREM OF GOFFMAN AND NEUGEBAUER 575

p{Gn (*,,£)}   ̂     1

£ - K 2

Then we have

u{gr\ (h0,x)} _LL{Gr\ (*„,£)} +j.|Gri(f,i)|

x — h0 x — h0

> h(J - ho) + h(x-Q _  1

x — ho 2

This contradicts (2'6), and we conclude that

(2'7) *,=/«)•

Finally we show that £GP- In fact,

(2'8) /i(0 = lim inf ap '      ■
z^{+ x — £

Using (2'7) we observe that

( /(*)-/(£)      1
(2'9) <*:* > ?, ——— > 0\ C G.

Since G has no unit right-density at £ (by the above argument),

neither has the set on r.h.s. of (2'9). Now (2'8) shows immediately

that/^p(£) gO, i.e. £GP- We have arrived at the final contradiction,

and the proof of the theorem is complete.

3. Theorem 3'1. Suppose that (i) / is a.u.s.c. on the left everywhere

in Io, and

(ii) /a'p(x) ^0 for all x in I0- Then f is monotone increasing in I0.

Proof. Let Xi and x2 be two points in I0 with Xi<x2. We shall show

that/(x2) ^/(xi). Without loss of generality we assume that Xi = a

and x2 = b. Let e, with e>0, be given. Consider the set G*

= {x: f(x) —f(a) 3: — e(x — a)}. Now we construct the point £* with

the help of the set G* exactly in the same way as we construct the

point £ in Theorem 2'1. It is also established as in Theorem 2'1 that

G* has no zero left-density at £*. Since / is a.u.s.c on the left at £*,

it follows easily that %*EG*. Clearly £*g&. Suppose that £*<b. Since

/ap(£) =0, we can find xEG*, with x>£*, such that

u{G*n(e,x)} ^ i

x - f* =   2 '
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Now we offer a contradiction argument similar to that which has

been used to established (2'7) in Theorem 2'1. We thus conclude that

£* = b. This gives, since £*£G*, f(b)—f(a)^—e(b—a). Since « is

arbitrary, we havef(b) S/(a). This completes the proof. The following

theorem is a generalization of Theorem 3'1.

Theorem 3'2. If (i) f is a.u.s.c on the left everywhere in I0,

(ii) /ap(x)=0 almost everywhere in I0, and

(iii) f£p(x)> — oo everywhere in Io, then f is monotone increasing in

h.

Proof. Let £= {x:/+(x)<0}. By hypothesis (ii) p(E)=0. By a

theorem [4, p. 214] there is a continuous increasing function a in I0

such that <r'(x) = + » for x££. Let e, with e>0, be given. Consider

the function xp defined on I0by:\p(x) =/(x)+«r(x). Then we have the

following:

(i) \p >s a.u.s.c on the left everywhere in I0, and

(ii) $-tLp(x) ^f-&p(x) +eo-t&p(x) SO for all x in I0. Hence, by Theo-

rem 3'1 \p is monotone increasing in 70. Since e is arbitrary, we con-

clude that/ is monotone increasing in /0- The proof is complete.

We wish to point out hypothesis (iii) in Theorem 3'2 is not re-

dundant. The following example illustrates this.

Let

/(*) = 2x   if 0 g x g 1

= 1      if 1 < x g 2.

/ satisfies all the conditions of Theorem 3'2 except at x = l, where

/iap(x) = — oo . / is not monotone increasing in [0, 2 ].

4. Referring to Theorem 2'1 we want to estimate how large the

exceptional set fx:/iap(x) go] may be without making the theorem

false. In this connection we recall the following theorem.

Theorem 4'1 [2, p. 199]. Suppose that f is a measurable function

in I0. Let

(i) S= |x:/aP(x) exists, and is finite},

and

(ii) T = {x: all four approximate derivates are infinite at x}. Then

p{lo\(SUT)}=0.

As an analogue to this we propose the following theorem.
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Theorem 4'2. Letf be a measurable function on Io such that

(i) Ex= {x:/aP(x) exists and 5^0}, and

(ii) P2 = {x: all four approximate derivates are infinite at x}, then

p[f{Jo\(PiUP2)}]=0.

We need the following lemmas.

Lemma 4'1. Let f be a measurable function, and \be a real number.

Let P= {x:/aP(x) =X}. Then

/*{/(£)} =S  \x\u(E).

Proof. By a theorem of S. Saks [3, p. 239], we can write P = U"_i E„

where/ is absolutely continuous on each P„ (n = 1, 2, • ■ • ). The sets

P„ may be taken to be pairwise disjoint. Since / is absolutely con-

tinuous on En, it satisfies Lusin's (A)-condition on En [3, p. 225],

and it is of bounded variation on En (n = 1, 2, • • • ). Therefore, by a

lemma of S. Saks [3, p. 221 ] there is a function gn which is of bounded

variation in I0 such that f(x)=g„(x) for xEEn. Clearly, gn' (x)

=/aP(x) =X whenever xEEn\Bn, where Bn is a subset of P„ with

p(Pn)=0. Since/ satisfies Lusin's (A)-condition over P„, we have

(4'1) u{f(B„)}  = 0.

Using a known result [3, p. 227] we have

u{f(En\B„)}    =   LL{gn(En\Bn)}   ^    f |  gn' (x) | dx  =    |  X |  U(En\Bn).
J Bn\B„

From (4'1) we deduce p{/(P„)} g |x|p(P„). Since P = U„"L, En, and

P„ are pairwise disjoint, we have

m{/(P)} g !«!/(£.)) g |x| i;M(Pn) = |x|M(P).
n=l n=l

Lemma 4'2. Let f be a measurable function on P and let E' = {x: at

least one approximate derivate is finite at x}. Then f satisfies Lusin's

(N)-condition on E'.

This lemma is in S. Saks [3, pp. 290-292].

Proof of Theorem 4'2. Let P3= {x:/aP(x) exists, and =0}, and

P4= {x:/aP(x) does not exist, and at least one of the four approximate

derivates is finite at x}. Clearly 7o\(PiWP2)CE3Up4. Hence,



578 A. P. BAISNAB [December

(4'2) m[/{/o\(£i U E2)] g p{f(E3)} + p{f(Ei)}.

By Lemma 4'1

(4'3) 4f(Et)} = 0.

According to Theorem 4'1 £4C10\(SUT), and hence p(E4)=0.

Using Lemma 4'2 we have

(4'4) p{f(Ei)} = 0.

From (4'2), (4'3) and (4'4) we have p[f{l0\(ExKJE2)} ] =0.

Theorem 4'3. Suppose that f is a measurable function on Io- Let (i) f

be a.u.s.c. on the left and a.l.s.c. on the right everywhere in Io,

(ii) P = {x: - oo </ap(x) < 0}, and p(P) = 0, and

(iii) Q= (x: all four approximate derivates are infinite with fiv(x)

= — oo, and Q be countable}. Then fis monotone increasing in Io-

Proof. Let H= {x:/iap(x) go}. Then we have

h\{i0\(Ex \j e2)} = Hr\(Exyj e2)

= (Hr\ Ex) yj (HC\ E2) ep^jq.

Now

p{f(H)} g p[f{H\(I0\(EiKJ E2))}\ + p[f{l0\(EiU E2)}]

= p[f{H\(I0\(EiV E2))}]

by Theorem 4'2. Thus

(4'5) p{f(H)} £p{f(P)}+p{f(Q)}.

By hypothesis (ii), p(P) =0 and by Lemma 4'2

(4'6) p\f(P)} = 0.

Let us suppose that p {f(Q)} > 0. Then the cardinality of Q must be

equal to that of the continuum, and hence Q is uncountable. This

contradicts hypothesis (iii). Hence we conclude that

(4'7) p{f(Q)}=0.

From (4'5), (4'6) and (4'7) we obtain p{f(H)} =0. Therefore

Int{f(H)} =0. An application of Theorem 2'1 now completes the

proof.
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