PROPERTIES OF VECTOR VALUED FINITELY ADDITIVE SET FUNCTIONS

R. B. DARST¹

Suppose that Σ is an algebra of subsets of a set S. If B is a Banach space over the real numbers R, then $H(B) = H(S, \Sigma, B)$ denotes the space of bounded $(\sup_{E \in \Sigma} ||\beta(E)||_B < \infty)$, B-valued, finitely additive set functions β on Σ . Suppose that B has a basis $\{b_i\}$ of unit vectors. Then the coefficient functionals β_i , $i \ge 1$, of β , determined by $\beta(E) = \sum b_i \beta_i(E)$, are elements of H(R). The purpose of this paper is to initiate a study of the interplay between β , the sequence $\{\beta_i\}$, and the basis $\{b_i\}$. Properties which are obtained are used to establish some Radon-Nikodým theorems relating $\beta \in H(B)$ and $\alpha \in H(A)$, A a Banach space over R.

Let us begin by recalling that because $\{b_i\}$ is a basis for B and $\|b_i\|=1$, $i\geq 1$, it follows [8, p. 67, Theorem 1] that there exists $M_B>0$ such that if $\sum b_i\lambda_i\in B$, then $\|\sum_{i\leq n}b_i\lambda_i\|\leq M_B\|\sum b_i\lambda_i\|$ and, hence, $\|\sum_{m< i\leq n}b_i\lambda_i\|\leq 2M_B\|\sum b_i\lambda_i\|$. In particular, $|\lambda_i|\leq 2M_B\|\sum b_i\lambda_i\|$, $i\geq 1$. Thus the coefficient functionals β_i of β are bounded by $2M_B\|\beta\|_s(S)$ where $|\beta|_s(S)=\sup\{\|\beta(E)\|; E\in \Sigma, E\subset S\}$. Since the functionals β_i are also finitely additive, $\{\beta_i\}$ is a bounded sequence of elements of H(R). Moreover, since $\sum b_i\lambda_i\in B$ implies that $\lim \lambda_i=0$, it follows that $\lim \beta_i(E)=0$, $E\in \Sigma$. This latter property permits us to assert that the sequence $\{\beta_i\}$ converges weakly to zero if Σ is a sigma algebra [6]. The following example shows that, in general, this is not the case.

EXAMPLE 1. Let $e_i = \{\delta_{ij}\}_{j \ge 1}$, $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \ne j$. Then $\{e_i\}$ is a sequence of unit vectors which is a basis for the space c_0 of sequences of real numbers which converge to zero. Let Σ_0 be an algebra of subsets of a set S_0 such that there exists a bounded sequence $\{\gamma_i\}$ of elements of $H(S_0, \Sigma_0, R)$ satisfying

- (1) $\lim_{i} \gamma_{i}(E) = 0$, $E \in \Sigma_{0}$ and
- (2) the sequence $\{\gamma_i\}$ does not converge weakly to zero.

Let $\gamma \in H(S_0, \Sigma_0, c_0)$ be defined by $\gamma(E) = \sum e_i \gamma_i(E)$.

Example 1 shows that if we wish to conclude that $\{\beta_i\}$ converges weakly to zero, then we must impose additional conditions somewhere. We shall first consider a condition on β and then conditions on β . The condition which we shall impose on β is a natural condition

Received by the editors May 20, 1968.

¹ The author was partially supported by a NSF grant.

to impose when seeking to compare β with an element α of H(A) (see [4, particularly the concluding remarks]). The conditions, G_1 and G_2 , on B are technical conveniences which, fortunately, are of sufficiently common occurrence to warrant their introduction.

Before proceeding to Theorem 1, let us recall that if $\mu \in H(R)$ and $E \in \Sigma$, then $v(\mu, E) = \sup \{\mu(F); F \in \Sigma, F \subset E\} - \inf \{\mu(F); F \in \Sigma, F \subset E\}$ is the variation of μ on E.

THEOREM 1. Suppose that $\lim \|\beta(F_i)\| = 0$ whenever $\{F_i\}$ is a sequence of pairwise disjoint elements of Σ . Then the sequence $\{\beta_i\}$ converges weakly to zero.

Proof. Suppose, on the contrary, that $\{\beta_i\}$ does not converge weakly to zero. Then, by Theorem 3.1 of [11] (cf. [5]), there exists $\epsilon > 0$ and a sequence $\{E_p\}$ of pairwise disjoint elements of Σ such that $\left|\sum_{p}\beta_{i}(E_{p})\right|>3\epsilon$ for infinitely many positive integers i. Let i_{1} be the least such positive integer, and let p_1 be the least positive integer satisfying $\left|\sum_{p \leq p_1} \beta_{i_1}(E_p)\right| > 3\epsilon$. Let $F_1 = \bigcup_{p \leq p_1} E_p$. The following facet of this construction is not necessary to establish Theorem 1 but will be convenient for our proof of Theorem 2. Let q_1 be the least positive integer greater than p_1 for which $\sum_{p\geq q_1} v(\beta_{i_1}, E_p) < \epsilon$. Let k_1 be the least positive integer such that $i \ge k_1$ implies that $\sum_{p < q_1} |\beta_i(E_p)| < \epsilon$. This completes the first stage of this construction; to set the pattern, the second stage follows. Let i_2 be the least positive integer greater than k_1 ($k_1 \ge i_1$) such that $\left| \sum_{p \le p_2} \beta_{i_2}(E_p) \right| > 3\epsilon$, and let p_2 be the least positive integer satisfying $\left| \sum_{p \le p_2} \beta_{i_2}(E_p) \right| > 3\epsilon$. Let $F_2 = \bigcup_{q_1 \le p \le p_2} E_p$. Then $\left| \beta_{i_2}(F_2) \right| > \left| \sum_{p \le p_2} \beta_{i_2}(E_p) \right| - \sum_{p < q_1} \left| \beta_{i_2}(E_p) \right| > 2\epsilon$. Let q_2 be the least positive integer greater than p_2 such that $\sum_{p \geq q_2} v(\beta_{i_2}, E_p) < \epsilon$. Let k_2 be the least positive integer such that $i > k_2$ implies that $\sum_{p < q_2} |\beta_i(E_p)| < \epsilon$. Repeating this process inductively, we obtain a sequence $\{F_i\}$ of pairwise disjoint elements of Σ and an increasing sequence i_1, i_2, \cdots of positive integers such that

- (1) $\beta_{i_j}(F_j) > 2\epsilon$ and
- (2) if $k \ge j$, then

$$\begin{aligned} \left| \beta_{i_j}(\bigcup_{n \le k} F_n) \right| &\ge - \sum_{p < q_{k-1}} \left| \beta_{i_j}(E_p) \right| \\ &+ \left| \sum_{q_{j-1} \le p \le p_j} \beta_{i_j}(E_p) \right| - \sum_{p \ge q_j} v(\beta_{i_j}, E_p) > \epsilon. \end{aligned}$$

Notice that up to now we have not used the hypothesis of Theorem 1. Invoking now the hypothesis $\|\beta(F_j)\| \to 0$, a contradiction obtains from (1) and $|\beta_{i_j}(F_j)| \le 2M_B \|\beta(F_j)\|$.

The following example shows that the converse to Theorem 1 is not true.

EXAMPLE 2. Suppose that N is the set of positive integers and that Γ is the sigma algebra of all subsets of N. Suppose that L is the linear span, over R, of the sequences $e_i = \{\delta_{ij}\}_{j\geq 1}$, is normed by

$$\|\{x\}_i\| = \sup\{|x_1|, (|x_2| + |x_3|), (|x_4| + |x_5| + |x_6|), \dots\},\$$

and let X denote the completion of L. Then X is represented as a space of sequences. Moreover, because $\lim x_i = 0$, whenever $x = \{x_i\} \in X$, it follows that $\{e_i\}$ is a basis for X. For $i \ge 1$, let $\beta_i \in H(N, \Gamma, R)$ be defined by $\beta_i(E) = 1/k$ if $i \in E_k = \{i: (k-1)k < 2i \le k(k+1)\}$ and $i \in E$, and $\beta_i(E) = 0$ otherwise. Let $\beta(E) = \sum e_i \beta_i(E)$. Then $\beta \in H(N, \Gamma, X)$ and, hence because Γ is a sigma algebra, $\{\beta_i\}$ converges weakly to zero. Moreover, $\lim v(\beta_i, S) = 0$ which of course, also implies weak convergence to zero. Nevertheless, $\{E_k\}$ is a sequence of pairwise disjoint elements of Γ and $\|\beta(E_k)\| = 1$, $k \ge 1$.

If $\{\beta_i\}$ is a sequence of elements of H(R) satisfying $\Sigma v(\beta_i, S) < \infty$ and β is defined by $\beta(E) = \sum b_i \beta_i(E)$, then $\beta \in H(B)$ and $\lim \|\beta(E_i)\| = 0$ whenever $\{E_i\}$ is a sequence of pairwise disjoint elements of Σ . (Even more is true, namely, $\Sigma \|\beta(E_i)\| < \infty$.) Thus additional conditions on B are not necessary in order that the hypothesis of Theorem 1 be satisfied. We shall introduce two growth conditions on a Banach space with basis and show (Theorem 3) that one of them implies the hypothesis of Theorem 1.

The statement that $\{b_i\}$ satisfies condition G_1 means that if each of M and ϵ is a positive number, then there is a positive number $\delta = \delta(M, \epsilon)$ such that if n is a positive integer, $x = \sum_{i \le n} b_i \lambda_i$, $y = b_{n+1}\lambda_{n+1}$, $||x|| \le M$, and $||y|| \ge \epsilon$, then $||x+y|| \ge ||x|| + \delta$.

Notice that if condition G_1 is satisfied, then $\{b_i\}$ is a monotone basis: $\|\sum_{i\leq n}b_i\lambda_i\|\leq \|\sum_{i\leq n+1}b_i\lambda_i\|$. We might also mention that $\delta(M,\epsilon)=M\delta(1,\epsilon/M)$.

The statement that $\{b_i\}$ satisfies condition G_2 means that if (M, ϵ) is a pair of positive numbers, then there is a positive number $\gamma(M, \epsilon)$ such that if $1 \leq n < p$, $x = \sum_{i \leq n} b_i \lambda_i$, $y = \sum_{n < i \leq p} b_i \lambda_i$, $||x|| \leq M$, and $||y|| \geq \epsilon$, then $||x+y|| \geq ||x|| + \gamma(M, \epsilon)$.

It is clear that if $\{b_i\}$ satisfies G_2 , then it also satisfies G_1 ($\delta(M, \epsilon)$) $\geq \gamma(M, \epsilon)$). We are unaware of an example where G_1 is satisfied but G_2 is not. We shall next show that if G_1 is satisfied, then $\{\beta_i\}$ converges weakly to zero. Then we shall show that if G_2 is satisfied, then the hypothesis of Theorem 1 is satisfied.

THEOREM 2. Suppose that $\{b_i\}$ satisfies condition G_1 . Then the coefficient functionals β_i converge weakly to zero.

PROOF. Suppose again that $\{\beta_i\}$ does not converge weakly to zero. Then all but the last sentence of the proof of Theorem 1 applies. Let $M = M_B |\beta|_s(S)$. Let k be a positive integer satisfying $k\delta > M$, and let $E = \bigcup_{j \le k} F_j$. Then the contradiction $M < \delta k < \sum_{j \le k} (\|\sum_{n \le i_j} b_n \beta_n(E)\| - \|\sum_{n \le i_j} b_n \beta_n(E)\| \le M_B \|\beta(E)\| \le M_B \|\beta\|_s(S)$ follows from (2) of the proof of Theorem 1 together with the hypothesis of Theorem 2.

THEOREM 3. Suppose that $\{b_i\}$ satisfies condition G_2 . Then $\lim_i ||\beta(E_i)|| = 0$ whenever $\{E_i\}$ is a sequence of pairwise disjoint elements of Σ .

PROOF. Suppose on the contrary that there exists $\epsilon > 0$ and a sequence $\{E_n\}$ of pairwise disjoint element of Σ such that $\|\beta(E_n)\| > 3\epsilon$, $n \ge 1$. Then there exists a positive integer k_1 such that $\|\sum_{i \le k_1} b_i \beta_i(E_1)\| > 3\epsilon$ and, moreover, if $k_1 \le p < n$, then $\|\sum_{p < i \le n} b_i \beta_i(E_1)\| < \epsilon/2$. Let $n_1 = 1$. There exists a positive integer n_2 such that $\sum_{i \le k_1} \sum_{j \ge n_2} v(\beta_i, E_j) < \epsilon$. There exists a positive integer k_2 such that

$$\left\| \sum_{i \le k_2} b_i \beta_i(E_{n_2}) \right\| > 3\epsilon$$

and, moreover, if $k_2 \leq p < n$, then $\|\sum_{p < i \leq n} b_i \beta_i(E_{n_2})\| < \epsilon/2^2$. There exists a positive integer n_3 such that $\sum_{i \leq k_2} \sum_{j \geq n_3} v(\beta_i, E_j) < \epsilon$. Iterate this procedure. Let m be a positive integer. Then

$$\left\| \sum_{i \leq k_1} b_i \beta_i \left(\bigcup_{j \leq m} E_{n_j} \right) \right\| \geq \left\| \sum_{i \leq k_1} b_i \beta_i \left(E_{n_1} \right) \right\| - \sum_{i \leq k_1} \sum_{j \geq n_2} v(\beta_i, E_j) > 2\epsilon.$$

For p > 1, let $S_p = \{i; k_{p-1} < i \le k_p\}$. Then, for 1 ,

$$\Big\| \sum_{i \in S_p} b_i \beta_i \bigcup_{j \le m} (E_{n_j}) \Big\|$$

$$\geq -\sum_{j< p} \| \sum_{i \in S_p} b_i \beta_i (E_{n_j}) \| + \| \sum_{i \in S_p} b_i \beta_i (E_{n_p}) \| - \sum_{i \in S_p} \sum_{j \geq n_{p+1}} v(\beta_i, E_j)$$

> $-\epsilon (1/2 + 1/2^2 + \cdots + 1/2^{p-1}) + 3\epsilon - \epsilon > \epsilon.$

For p=m, the preceding inequalities are easily modified to yield that $\left\|\sum_{i\in S_p}b_i\beta_i\bigcup_{j\leq m}(E_{n_j})\right\|>-\epsilon+3\epsilon=2\epsilon$. Let m be a positive integer satisfying $m\gamma(\left|\beta\right|_{s}(S), \epsilon)>\left|\beta\right|_{s}(S)$, and let $H=\bigcup_{j\leq m}E_{n_j}$. Then

$$\begin{aligned} \|\beta(H)\| &\geq \|\sum_{i \leq k_1} b_i \beta_i(H)\| + \sum_{j \leq m} (\|\sum_{i \leq k_j} b_i \beta_i(H)\| - \|\sum_{i \leq k_{j-1}} b_i \beta_i(H)\|) \\ &\geq m \gamma(\|\beta\|_s(S), \epsilon) > \|\beta\|_s(S) \end{aligned}$$

which is impossible.

Let us now turn to a discussion of some Radon-Nikodým theorems. We begin with brief resumé of some pertinent history.

The classical Radon-Nikodým theorem (e.g. [9, Theorem III.10.2]) asserts that if Σ is a sigma algebra and λ is a countably additive element of H(C) where C denotes the complex numbers, then λ can be given an integral representation with respect to a nonnegative, countably additive element μ of H(R) if, and only if, λ is absolutely continuous with respect to μ .

In 1939, S. Bochner published a generalization [1] which removed the restrictions that Σ be a sigma algebra and that the set functions be countably additive. A representation for the case where $\mu \in H(R)$ appeared [2] in 1962. Theorem III.10.7 of [9] supplements the classical theorem by allowing μ to be complex valued, and recently C. Fefferman [10] extended this latter result to the case of a general algebra of subsets of a set. Thereafter, E. Green and the author [7] gave a proof of Fefferman's result, based on [2]. The approach used in [7] will be applied hereinafter to elements of H(B).

While there are several possible definitions of absolute continuity which might be appropriate, we choose the following.

The statement that $\alpha \in H(A)$, A a Banach space, is absolutely continuous with respect to β ($\alpha \ll \beta$) means that if $\epsilon > 0$, then there is $\delta > 0$ such that if $|\beta|_s(E) < \delta$, then $|\alpha|_s(E) < \epsilon$.

The statement that α is singular with respect to $\beta(\alpha \perp \beta)$ means that if $\epsilon > 0$, then there exists $E \in \Sigma$ such that $|\beta|_s(E) < \epsilon$ and $|\alpha|_s(S-E) < \epsilon$.

Denote by L(B, A) the space of bounded linear transformations from B to A.

The statement that T is a (Σ, M) -simple function means that T is a function on S to M and, moreover, there is a finite partition $\pi = \{E_i\}_{i \le n}$ of S in Σ (i.e., $E_i \in \Sigma$, $i \le n$) such that T is constant on the elements E_i of π .

Henceforth, suppose that A has a basis $\{a_i\}$ of unit vectors.

THEOREM 4. Suppose that A is n-dimensional, that B is m-dimensional, and that $\alpha \ll \beta$. Then there is a sequence T_k of $(\Sigma, L(B, A))$ -simple functions such that $\lim_k |\alpha - \int T_k d\beta|_s(S) = 0$.

PROOF. From $\alpha \ll \beta$ and $|\alpha_i(E)| \leq 2M_A ||\alpha(E)||$ it follows that $\alpha_i \ll \beta$. Moreover, letting $\alpha_{i1} = \alpha_i \wedge \beta_1$, where $\alpha_i \wedge \beta_1$ denotes that part of α_i which is absolutely continuous with respect to β_1 (see e.g. [2]), and $\alpha_{ij} = (\alpha_i - \sum_{k < j} \alpha_{ik}) \wedge \beta_j$ for $i < j \leq m$, it follows that $\alpha_{ij} \perp \alpha_{ik}$ if $j \neq k$ and also that $\alpha_i = \sum_{j \leq m} \alpha_{ij}$. For $i \leq n$ and $j \leq m$ there is a sequence $\{f_{ijk}\}_{k \geq 1}$ of (Σ, R) -simple functions such that

$$\lim_{k} v(\alpha_{ij} - \iint_{ijk} d\beta_{j}, S) = 0.$$

Let $T_k(x)$ be the transformation whose matrix with respect to the bases $\{a_i\}$ and $\{b_j\}$ is given by $(f_{ijk}(x))_{i,j}$. Then T_k is a sequence of $(\Sigma, L(B, A))$ simple functions and $\lim_k |\alpha - \int T_k d\beta|_s(S) = 0$.

In the next theorem it will be convenient to have the following notation. For each positive integer m, let β^m be defined by $\beta^m(E) = \sum_{i \le m} b_i \beta_i(E)$, $E \in \Sigma$. Then $\beta^m \in H(B^m)$ where B^m denotes the closed linear span, in B, of b_1, \dots, b_m .

THEOREM 5. Suppose that $\lim_{m} |\beta - \beta^{m}|_{s}(S) = 0$ and, moreover, that $\alpha \ll \beta$. Then there is an increasing sequence $\{m_{k}\}$ of positive integers and a sequence T_{k} of $(\Sigma, L(B^{m_{k}}, A^{k}))$ -simple functions such that $|\alpha^{k} - \int T_{k}d\beta|_{s}(S) < 1/k$, where $\int T_{k}d\beta$ is defined to be $\int T_{k}d\beta^{m_{k}}$.

PROOF. Let $\epsilon > 0$. Then there exists $\delta > 0$ such that if $|\beta|_{\delta}(E) < \delta$, then $|\alpha|_s(E) < \epsilon$. Let m satisfy $|\beta - \beta^m|_s(S) < \delta/2$. Then $|\beta^m|_s(E)$ $<\delta/2$ implies that $|\alpha|_{\mathfrak{s}}(E)<\epsilon$. Notice that $|\beta|_{\mathfrak{s}}(E)<\delta/(2M_B)$ implies that $|\beta^m|_{\mathfrak{s}}(E) < \delta/2$, and that if $|\alpha|_{\mathfrak{s}}(E) < \epsilon$, then $|\alpha_i|_{\mathfrak{s}}(E) < M_A \epsilon$. For $k \ge 1$, choose ϵ_k so that $M_A \epsilon_k < 1/(4k^2)$. Then choose $\delta_k(\delta_k < \delta_{k-1})$ and $m_k(m_k > m_{k-1})$ in accordance with the preceding statements. For $i \ge 1$, let $\alpha_{i1} = \alpha_i \wedge \beta_1$ and, for j > 1, let $\alpha_{ij} = (\alpha_i - \sum_{p < j} \alpha_{ip}) \wedge \beta_j$. Let $\gamma_{ij} = \sum_{p \le j} \alpha_{ip}$. Then $\alpha_{ij} \perp \alpha_{ip}$ if $j \ne p$, and $(\alpha_i - \gamma_{ij}) \perp \beta_p$ for $p \le j$. Hence if $\lambda > 0$ and $p \leq j$, then there exists $E_p \in \Sigma$ such that $v(\beta_p, E_p) < \lambda$ and $v(\alpha_i - \gamma_{ij}, S - E_p) < \lambda$. If $F = \bigcap_{p \le j} E_p$, then $v(\alpha - \gamma_{ij}, S - F) < j\lambda$ and $v(\beta_p, F) < \lambda$, $p \le j$, which implies that $|\beta^j|_s(F) \le j\lambda$. If $j = m_k$ and λ satisfies $m_k \lambda < \min(\delta_k/2, 1/(4k^2))$, then $v(\alpha_i - \gamma_{imk}, S - F) < 1/(4k^2)$ and $|\beta^{m_k}|_{\mathfrak{s}}(F) < \delta_k/2$. This latter inequality, together with the heretofore assigned properties of δ_k , implies that $|\alpha_i|_{\mathfrak{s}}(F) < 1/(4k^2)$ and, in turn, that $v(\alpha_i, F) < 1/(2k^2)$. Then, since $v(\alpha_i, E) = v(\alpha_i - \gamma_{ij}, E)$ $+v(\gamma_{ij}, E), E \in \Sigma, i, j \ge 1$, it follows that $v(\alpha_i - \gamma_{imk}, F) < 1/(2k^2)$ and, hence, $v(\alpha_i - \gamma_{im_k}, S) < 3/(4k^2)$ for $i \ge 1$. Because $\alpha_{ij} \ll \beta_i$ there are (Σ, R) -simple functions f_{ijk} such that $v(\alpha_{ij} - \int f_{ijk} d\beta_j, S) < 1/(4k^2m_k)$. Thus $v(\gamma_{im_k} - \int \sum_{j \le m_k} f_{ijk} d\beta_j, S) < 1/(4k^2)$ and, hence, $v(\alpha_i - \int \sum_{j \le m_k} f_{ijk} d\beta_j, S) < 1/k^2$. From this latter inequality it follows that if $T_k(x)$ is the matrix whose (i, j)-th entry is $f_{ijk}(x)$ for $i \leq k$ and $j \leq m_k$ (and zero otherwise, when necessary, in order that T_k have the proper domain and range), then $|\alpha^k - \int T_k d\beta|_{\mathfrak{s}}(S) \leq 1/k$.

COROLLARY 5.1. For each positive integer n, $\lim_{k} |\alpha^{n} - \int T_{k} d\beta|_{s}(S) = 0$.

COROLLARY 5.2. For each $E \in \sum_{k} \alpha(E) = \lim_{k} \int_{E} T_{k} d\beta$.

COROLLARY 5.3. If $\lim_{n} |\alpha - \alpha^{n}|_{s}(S) = 0$, then $\lim_{k} |\alpha - \int T_{k} d\beta|_{s}(S) = 0$.

Example 2 shows that norm convergence of the sequence $\{\beta_i\}$ to zero is not a sufficient condition in order that $\lim |\beta - \beta^n|_{\mathfrak{s}}(S) = 0$. The following example shows that $|||\beta||| < \infty$ is not a necessary condition in order that $\lim |\beta - \beta^n|_{\mathfrak{s}}(S) = 0$, where $|||\beta||| = \sup \{\Sigma ||\beta(E_i)||_{\mathfrak{s}} = \{E_i\}$ is a finite partition of S comprised of elements of Σ .

Example 3. Suppose that S is the set of positive integers, Σ is the algebra of all subsets of S, $B = l_2$, $b_i = \{\delta_{ij}\}_{j \geq 1}$, $\beta_i(E) = (1/i) \sum_{j \in E} \delta_{ij}$, and $\beta(E) = \sum b_i \beta_i(E)$. Then $\beta \in H(B)$, $\{b_i\}$ satisfies condition G_2 , $|||\beta||| = \infty$ and $\lim |\beta - \beta^n|_s(S) = 0$.

We conclude with conditions which are sufficient to insure that $\lim |\beta - \beta^n|_s(S) = 0$.

THEOREM 6. Suppose that $|||\beta||| = M < \infty$ and that $\{b_i\}$ satisfies condition G_2 . Moreover suppose that if

$$x_k = \sum_{i \le n} b_i \lambda_{ki}$$
 and $y_k = \sum_{n < i \le m_k} b_i \lambda_{ki}$, $k \le m$,

then

$$\left|\left|\sum_{k\leq m}(x_k+y_k)\right|\right|-\left|\left|\sum_{k\leq m}x_k\right|\right|\leq \sum_{k\leq m}(\left|\left|x_k+y_k\right|\right|-\left|\left|x_k\right|\right|).$$

Then $\lim |\beta - \beta^n|_s(S) = 0$.

PROOF. Let $\epsilon > 0$. Then let δ be a positive number such that if $\|\sum_{i \le n} b_i \lambda_i\| \le M$ and $\|\sum_{n < i \le m} b_i \lambda_i\| \ge \epsilon$, then $\|\sum_{i \le m} b_i \lambda_i\| \ge \|\sum_{i \le n} b_i \lambda_i\| + \delta$. Let $\pi = \{E_i\}$ be a finite partition of S in Σ satisfying $\sum_i \|\beta(E_i)\| > M - \delta/2$. Let n be a positive integer satisfying $\sum_i \|(\beta - \beta^k)(E_i)\| < \delta/2$ if $k \ge n$, and let $k \ge n$. Then $\sum_i \|\beta^k(E_i)\| > M - \delta$. Suppose that $|\beta - \beta^k|_s(S) > \epsilon$. Then there is an element E of Σ satisfying $\|(\beta - \beta^k)(E)\| > \epsilon$ and, hence, $(\|\beta(E)\| - \|\beta^k(E)\|) \ge \delta$. Let π_1 be the partition of S generated by π and E, let $F_i = E_i \cap E$ and let $G_i = E_i - E$. Then the contradiction

$$\begin{split} \sum_{T \in \pi_1} \left\| \beta(T) \right\| &= \sum_{T \in \pi_1} \left\| \beta^k(T) \right\| + \sum_{i} \left(\left\| \beta(F_i) \right\| - \left\| \beta^k(F_i) \right\| \right) \\ &+ \sum_{i} \left(\left\| \beta(G_i) \right\| - \left\| \beta^k(G_i) \right\| \right) \ge \sum_{E \in \pi} \left\| \beta^k(E) \right\| \\ &+ \left(\left\| \beta(E) \right\| - \left\| \beta^k(E) \right\| \right) > (M - \delta) + \delta = M \end{split}$$

obtains.

References

- 1. S. Bochner, Additive set functions on groups, Ann. of Math. 40 (1939), 769-799.
- 2. R. B. Darst, A decomposition of finitely additive set functions, J. Math. Reine Angew. 210 (1962), 31-37.

- 3. ——, A decomposition for complete normed abelian groups with applications to spaces of additive set functions, Trans. Amer. Math. Soc. 103 (1962), 549-559.
 - 4. ——, The Lebesgue decomposition, Duke Math. J. 30 (1963), 553-556.
- 5. ——, A direct proof of Porcelli's condition for weak convergence, Proc. Amer. Math. Soc. 16 (1965), 1094-1096.
- 6. —, On a theorem of Nikodým with applications to weak convergence and von Neumann algebras, Pacific J. Math. 23 (1967), 473-477.
- 7. R. B. Darst and E. Green, On a Radon-Nikodým theorem for finitely additive set functions, Pacific J. Math. 27 (1968), 255-259.
- 8. M. M. Day, *Normed linear spaces*, 2nd rev. ed., Ergebenesse der Math., Heft 21, Springer-Verlag, Berlin, 1962.
- 9. N. Dunford and J. T. Schwartz, Linear operators, Interscience, New York,
- 10. C. Fefferman, A Radon-Nikodým theorem for finitely additive set functions, Pacific J. Math. 23 (1967), 35-45.
- 11. P. Porcelli, Two embedding theorems with applications to weak convergence and compactness in spaces of additive type functions, J. Math. Mech. 9 (1960), 273-292.

PURDUE UNIVERSITY