PROPERTIES OF VECTOR VALUED FINITELY
ADDITIVE SET FUNCTIONS

R. B. DARST!

Suppose that 2 is an algebra of subsets of a set S. If B is a Banach
space over the real numbers R, then H(B)=H(S, Z, B) denotes the
space of bounded (supge z|]B(E)HB< ), B-valued, finitely additive
set functions B on Z. Suppose that B has a basis {b,-} of unit vectors.
Then the coefficient functionals 8;, =1, of 8, determined by B(E)
=Y biB:(E), are elements of H(R). The purpose of this paper is to
initiate a study of the interplay between 3, the sequence {Bi}, and
the basis {b;}. Properties which are obtained are used to establish
some Radon-Nikodym theorems relating SEH(B) and a&EH(A4), 4
a Banach space over R.

Let us begin by recalling that because {b:} is a basis for B and
l6:l] =1,i=1, it follows [8, p. 67, Theorem 1] that there exists Mz>0
such that if D bN,EB, then || 2 s bhil| £ Ma|| Db\ and, hence,
| S mcicn b <2M5]| SbiMd|. In particular, |N;| <2005 b,
1= 1. Thus the coefficient functionals 8 of S are bounded by 2 M 3| 8] (S)
where |ﬂ| (S) =sup{[|,3(E)”; EcZ, ECS}. Since the functionals B3;
are also finitely additive, {B;} is a bounded sequence of elements of
H(R). Moreover, since Zb,?x,EB implies that lim \;=0, it follows
that lim B8;(E) =0, EEZ. This latter property permits us to assert
that the sequence {B.-} converges weakly to zero if T is a sigma alge-
bra [6]. The following example shows that, in general, this is not the
case.

ExamPLE 1. Let e;= {8;;} 21, 8;;=1if i=j and §;;=0 if 75%j. Then
{e:} is a sequence of unit vectors which is a basis for the space ¢, of
sequences of real numbers which converge to zero. Let 2, be an alge-
bra of subsets of a set Sy such that there exists a bounded sequence
{'y;} of elements of H(S,, Zo, R) satisfying

(1) lim; v:(E) =0, EEZ, and

(2) the sequence {'y;} does not converge weakly to zero.

Let y EH(Sy, 2o, o) be defined by y(E) = X exyi(E).

Example 1 shows that if we wish to conclude that {8;} converges
weakly to zero, then we must impose additional conditions some-
where. We shall first consider a condition on 8 and then conditions on
B. The condition which we shall impose on $ is a natural condition
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to impose when seeking to compare § with an element @ of H(4) (see
[4, particularly the concluding remarks]). The conditions, G; and
G2, on B are technical conveniences which, fortunately, are of suffi-
ciently common occurrence to warrant their introduction.

Before proceeding to Theorem 1, let us recall that if u©H(R) and
EEZ, thenv(u, E) =sup {u(F); FEZ, FCE} —inf {u(F); FEZ, FCE}
is the variation of u on E.

THEOREM 1. Suppose that lim||B(F;)|| =0 whenever {F;} is a se-
quence of pairwise disjoint elements of 2. Then the sequence { B;} con-
verges weakly to zero.

ProoF. Suppose, on the contrary, that {B.-} does not converge
weakly to zero. Then, by Theorem 3.1 of [11] (cf. [5]), there exists
€¢>0 and a sequence {E,,} of pairwise disjoint elements of 2 such that
[ > Bi(Ep)| > 3e for infinitely many positive integers 7. Let 7; be
the least such positive integer, and let p; be the least positive integer
satisfying | D psp Bi(Ep)| >3e. Let Fi=U,zp, E,. The following facet
of this construction is not necessary to establish Theorem 1 but will be
convenient for our proof of Theorem 2. Let ¢; be the least positive
integer greater than p, for which D _,.4, v(8i,, E,) <e. Let & be the
least positive integer such that =%, implies that Z,,<ql| Bi(E,,)I <e.
This completes the first stage of this construction; to set the pattern,
the second stage follows. Let 7, be the least positive integer greater
than k; (k1 =4,) such that | X, B,'z(Ep)l > 3¢, and let p, be the least
positive integer satisfying | D_,<p, Bi,(Ep)| > 3e. Let Fa=Uy cpsp Eop
Then Iﬁlz(F‘A’)' > ' ZPSPzBiz(Ep)l - Z?qul ﬁiz(Ep)I >2e Let q: be the
least positive integer greater than p, such that ) ,.,, v(8s, E,) <e.
Let k, be the least positive integer such that 7>k, implies that
ZKq2|ﬁi(E,,)| <e. Repeating this process inductively, we obtain a
sequence { F:} of pairwise disjoint elements of £ and an increasing
sequence 171, %, - + - of positive integers such that

(1) ﬁij(Fj) >2e and

(2) if k=7, then

Iﬁif(UF")| 2z - Z |Bij(Ep)|

nsk p<gx-1
+ I Z ﬁi,(Ep) | - Z v(/gt‘jr Ep) > e
9;j-1SPSPj p29;

Notice that up to now we have not used the hypothesis of Theorem 1.
Invoking now the hypothesis ||8(F;)||—0, a contradiction obtains
from (1) and |By;(Fy)| £2M35||B8(F)|.
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The following example shows that the converse to Theorem 1 is
not true.

ExaMPLE 2. Suppose that N is the set of positive integers and that
T is the sigma algebra of all subsets of N. Suppose that L is the linear
span, over R, of the sequences e;= {d;;};z1, is normed by

+ ix3l)7(|x4l +|x5| + lxsl)’...},

and let X denote the completion of L. Then X is represented as a
space of sequences. Moreover, because lim x;=0, whenever x = {x,}
& X, it follows that {ei} is a basis for X. Forz=1, let 3;EH(N, T, R)
be defined by Bi(E)=1/k if i€E,={i: (k—1)k<2i<k(k+1)}
and {€E, and Bi:(E)=0 otherwise. Let B(E)= D ef:(E). Then
BEH(N, T, X) and, hence because I is a sigma algebra, {Bi} con-
verges weakly to zero. Moreover, lim »(8;, S)=0 which of course,
also implies weak convergence to zero. Nevertheless, {E;} is a se-
quence of pairwise disjoint elements of I' and HB(E,J” =1,k=1.

If {Bi} is a sequence of elements of H(R) satisfying Zv(B;, S) <
and Bis defined by B(E) = D_b:8:(E), then 3&€ H(B) and lim||B(E,)|| =0
whenever {E,} is a sequence of pairwise disjoint elements of Z.
(Even more is true, namely, Z||8(E:)|| < ».) Thus additional condi-
tions on B are not necessary in order that the hypothesis of Theorem 1
be satisfied. We shall introduce two growth conditions on a Banach
space with basis and show (Theorem 3) that one of them implies the
hypothesis of Theorem 1.

The statement that {b;} satisfies condition G means that if each
of M and e is a positive number, then there is a positive number
8=06(M, € such that if » is a positive integer, x= D icn BNy,
y=bnyhasy, ||x]| £ M, and ||y]| Z¢, then llc+v]| = |x|;+6.

[Haddl = sup{ [ @], (] 2

Notice that if condition G, is satisfied, then {b;{ is a monotone
basis: || Yossabil| || 2isns1 bN]|. We might also mention that
8(M, €)= M1, ¢/ M).

The statement that {b;} satisfies condition G: means that if
(M, €) is a pair of positive numbers, then there is a positive number
v(M, ¢) such thatif 1 En<p,x= Disn b, y= > a<isp DN, ”x“ =M,
and ||y Z¢, then |+ = ||« +v (M, e).

It is clear that if {b,»} satisfies Gs, then it also satisfies Gy (6(M, €)
=v(M, €)). We are unaware of an example where G is satisfied but
G. is not. We shall next show that if G, is satisfied, then {8;} con-
verges weakly to zero. Then we shall show that if G, is satisfied, then
the hypothesis of Theorem 1 is satisfied.

THEOREM 2. Suppose that {bi} satisfies condition Gy. Then the coeffi-
cient functionals B; converge weakly to zero.
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ProorF. Suppose again that { B;} does not converge weakly to zero.
Then all but the last sentence of the proof of Theorem 1 applies. Let
M= MB] B| +(S). Let k be a positive integer satisfying k6> M, and let
E=U,;4F;. Then the contradiction M <8k< Z:’sk(” Zns,-j b,,B,,(E)“
— || Zonci; 0aBa(ED) || Znsix 0aB(B)|| < M||B(E)|| = M| B|4(S) fol-
lows from (2) of the proof of Theorem 1 together with the hypothesis
of Theorem 2.

THEOREM 3. Suppose that {bi} satisfies condition Gs. Then
lim,||B(E.)|| =0 whenever {E.} is a sequence of pairwise disjoint ele-
ments of 2.

ProOF. Suppose on the contrary that there exists €>0 and a se-
quence {E,} of pairwise disjoint element of Z such that ||8(E,)|| > 3e,
n=1. Then there exists a positive integer k; such that H Zigkl b;ﬁ,-(El)H
> 3¢ and, moreover, if k< p<n, then || Dp<izn biBi(Er)|| <e/2. Let
m=1. There exists a positive integer #n, such that Eigkl Zj;,,z
v(B;, E;) <e. There exists a positive integer k; such that

| 2 8:8:(Eny)]| > 3e

iske

and, moreover, if ko <p<n, then || 2 cizn b:iBi(En,)|| <e/22. There
exists a positive integer #; such that D i, D j2n0(8i E,)<e.
Iterate this procedure. Let m be a positive integer. Then

| 288U E)|| 2 || 20 08:ED]| — 2 2 B, Ej) > 2.

isky jsm isky isky Jzng
For p>1, let S, = {i; k,,_1<i§kp}. Then, for 1<p<m,
| 3 8:8: U (E.)|

1€Sy jsm
2 = 2| X bBuE)l + ] X baBi(E)]| — X 2 0B, E
i<p €S8, i€Sy €Sy jznpt1

> —e(1/2+1/224 - - - +1/271) + 3¢ — € > e

For p =m, the preceding inequalities are easily modified to yield that
| Zies, biBl;sm(En)|| > —e+3e=2e. Let m be a positive integer
satisfying m'y(|Bl.(S), &) > IBI,,(S), and let H=U;sn E,;. Then

el z || X ss:(m)|| + X (| Zos:(m)|| — || X 88:8)|))

tsky jsm isk; igkj—y

= m‘Y(l <] |s(S)’ 6) > I 8 I*(S)

which is impossible.
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Let us now turn to a discussion of some Radon-Nikodym theorems.
We begin with brief resumé of some pertinent history.

The classical Radon-Nikodym theorem (e.g. [9, Theorem 111.10.2])
asserts that if 2 is a sigma algebra and N is a countably additive ele-
ment of H(C) where C denotes the complex numbers, then N can be
given an integral representation with respect to a nonnegative, count-
ably additive element u of H(R) if, and only if, N is absolutely con-
tinuous with respect to u.

In 1939, S. Bochner published a generalization [1] which removed
the restrictions that 2 be a sigma algebra and that the set functions
be countably additive. A representation for the case where u& H(R)
appeared [2] in 1962. Theorem I11.10.7 of [9] supplements the
classical theorem by allowing u to be complex valued, and recently
C. Fefferman [10] extended this latter result to the case of a general
algebra of subsets of a set. Thereafter, E. Green and the author [7]
gave a proof of Fefferman’s result, based on [2]. The approach used
in [7] will be applied hereinafter to elements of H(B).

While there are several possible definitions of absolute continuity
which might be appropriate, we choose the following.

The statement that a EH(A), A a Banach space, is absolutely
continuous with respect to 8 (a<<B) means that if ¢>0, then there is
6> 0 such that if lﬁ +(E) <8, then |a|3(E)<e.

The statement that « is singular with respect to S(a 13) means
that if €>0, then there exists EE2X such that ’B +(E)<e and
|e| (S—E)<e.

Denote by L(B, 4) the space of bounded linear transformations
from B to A.

The statement that T is a (2, M)-simple function means that T is
a function on S to M and, moreover, there is a finite partition
T= {E.} isn0f Sin 2 (i.e., E;€Z, 1< n) such that T is constant on the
elements E; of .

Henceforth, suppose that A has a basis {ai} of unit vectors.

THEOREM 4. Suppose that A is n-dimensional, that B is m-dimen-
sional, and that a<kB. Then there is a sequence T of (T, L(B, A))-
simple functions such that limi| @ — [TidB| (S) =0.

ProOF. From a «B and |ai(E)| S2Ml|la(E)|| it follows that
a;«KB. Moreover, letting a; =a;/A\B1, where a; A\B1 denotes that part
of a; which is absolutely continuous with respect to 8 (see e.g. [2]),
and a;;=(o;— Zk<f ai) A\B; for 1<j<m, it follows that a;; Lo if
j#k and also that a;= D jzmaij. For i<n and j<m there is a se-
quence {fi,-k }lm of (Z, R)-simple functions such that
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limy v(as; — [findBi, S) = 0.

Let Ti(x) be the transformation whose matrix with respect to the
bases {a.-} and {b,-} is given by (fiix(x)):,;. Then T} is a sequence of
(, L(B, A)) simple functions and lim; |a—fTdB|.(S) =0.

In the next theorem it will be convenient to have the following
notation. For each positive integer m, let 8™ be defined by B™(E)
=Y i<m biBi(E), EEZ. Then B=EH(B™) where B™ denotes the
closed linear span, in B, of by, « - -, bn.

THEOREM 5. Suppose that lim,|B8—p"|,(S) =0 and, moreover, that
aXP. Then there is an increasing sequence {mk} of positive integers
and a sequence T, of (Z, L(B™, A¥))-simple functions such that
|a* — [TwdB| .(S) <1/k, where [Tidp is defined to be [TidBm*.

Proor. Let ¢>0. Then there exists § >0 such that if Iﬁl J(E) <38,
then |a|.(E)<e. Let m satisfy |8—pB"|.(S)<8/2. Then |B=|.(E)
<8/2 implies that |«|.(E) <e. Notice that | 8] .(E) <8/(2M3p) implies
that |B»|,(E) <8/2, and that if |a|,(E) <¢, then || .(E) < Mae. For
k=1, choose ¢ so that Mae, <1/(4k?). Then choose 8;(6; < 8;—1) and
mi(mr>m—) in accordance with the preceding statements. For
1%1, let [+ 551 =a,'/\61 and, for j> 1, let o= (oc,'— ZP<J' a,-,,)/\B,-. Let
Yii= 2psi Qip Then ai; Lag, if j#p, and (a;—7vyj) LB, for p<j.
Henceif A>0and p <j, then there exists E,&2 such thatv(B,, E,) <\
and v(a;—7vi, S—E,) <N If F= ﬂ,,sj E,, then v(a—vi;, S—F)<j\
and 9(8,, F) <\, p <j, which implies that |B8i|,(F) <j\. If j=m; and
\ satisfies mN <min(8;/2, 1/(4k?)), then v(a; —Yim, S— F)<1/(4k?)
and |Bm|,(F) <8,/2. This latter inequality, together with the hereto-
fore assigned properties of d;, implies that la;] +(F)<1/(4k?) and, in
turn, that v(a;, F)<1/(2k2%). Then, since v(ci, E)=v(a;—7:j, E)
+u(yiy, E), EEZ, i, j=1, it follows that v(a; —Yim, F)<1/(2k?)
and, hence, v(a; —Yims, S)<3/(4k?) for 1=1. Because a;;<f3; there
are (2, R)-simple functions fiz such that v(as;— [fixdB;, S)
<1/(4k*my). Thus v(Yime— J D isms fiedB;, S)<1/(4k?) and, hence,
v(@i— [ D jeme fiiedB;, S)<1/k:. From this latter inequality it fol-
lows that if T:(x) is the matrix whose (¢, j)-th entry is fiz(x) for
1<k and j <m,; (and zero otherwise, when necessary, in order that T}
have the proper domain and range), then |a’=— S deﬁl.(S) <1/k.

COROLLARY 5.1. For each positive integer n, limi| a" — [TidB].(S) =0.
COROLLARY 5.2. For each EE ), a(E) =lim,, [ T:dB.
COROLLARY 5.3. If lim,| @ —a"| .(S) =0, then limi| e — [T:dB|.(S) =0.
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Example 2 shows that norm convergence of the sequence {8:} to
zero is not a sufficient condition in order that lim|B8—g|,(S) =0. The
following example shows that |||8]|| < = is not a necessary condition
in order that lim|B—p"|.(S)=0, where |||B]||=sup{Z||BE)];
7= {E;} is a finite partition of S comprised of elements of Z}.

ExamPpLE 3. Suppose that S is the set of positive integers, Z is the
algebra of all subsets of S, B=1,, b;= {8} 21, B:«(E) = (1/4) D je 5 8:j,
and B(E)= ZbiB;(E). Then BEH(B), {bi} satisfies condition Gg,
/|8]] = © and lim|B—B"|.(S)=0.

We conclude with conditions which are sufficient to insure that

lim|B —B*|+(S) =0.

THEOREM 6. Suppose that |||Bl|| =M < o and that {b:;} satisfies
condition Gy. Moreover suppose that if

X = Z bi)\ki and Ve = Z b.')\ki, k= m,

isn n<lismy
then
Yt = || Sl = S G+ 3l = ).
ksm : ksm ksm

Then lim|B—p7|.(S) =0.

Proor. Let €>0. Then let 6 be a positive number such that
if || XenbM]|=M and || Zaciam bNl|Ze, then || Xicm bk
=|| > isn bN||+8. Let 7= {E;} be a finite partition of S in =
satisfying D [B(Ei)” > M —8/2. Let n be a positive integer satisfying
S B=B)(EN|<8/2 if k=zn, and let k=n. Then D_i|B*(E)||
> M —38. Suppose that |8—p*|,(S)>e. Then there is an element E
of Z satisfying ||(8—B*)(E)||>e€ and, hence, (|B(E)||—||B*(E)||)=5s.
Let m; be the partition of S generated by 7 and E, let F;=E,N\E and
let G;=E;—E. Then the contradiction

sl = Z sl + X dls@all — lIFalD)

Temn TET) 2

+ 2 (ls@all = [ls=Gal) = P> ll6+(E)||
+ (8@ - llexB)) > (M —8) +86=M

obtains.
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