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Suppose that 2 is an algebra of subsets of a set S. If B is a Banach

space over the real numbers R, then H(B) =H(S, 2, B) denotes the

space of bounded (supge2|||8(£)||j3< °°), 5-valued, finitely additive

set functions /3 on 2. Suppose that B has a basis {bt} of unit vectors.

Then the coefficient functionals p\-, i^l, of j3, determined by /3(A)

=2~lbiBi(E), are elements of H(R). The purpose of this paper is to

initiate a study of the interplay between /3, the sequence {p\}, and

the basis {bt}. Properties which are obtained are used to establish

some Radon-Nikodym theorems relating ^EH(B) and a£/7(4), 4

a Banach space over R.

Let us begin by recalling that because {&,} is a basis for B and

\\bi\\ =1,*^1, it follows [8, p. 67, Theorem l] that there exists MB> 0

such that if 2^,bir\iEB, then | Z>'s»*»^»|| gAfs|| Z^»'A>II and, hence,

\\2Z<n<isnb,\i\\^2MB\\2Zbi'Ki\\. In particular, |X,-| g2MB|| Z^<ll-
i 2:1. Thus the coefficient functionals p\ of /3 are bounded by 2 MB | j81, (S)

where |/3|,(5) =sup{||j8(£)||; ££2, EES}. Since the functionals ft

are also finitely additive, {/3,-j is a bounded sequence of elements of

H(R). Moreover, since 2^bikiEB implies that lim X, = 0, it follows

that lim /3f(JE) =0, ££2. This latter property permits us to assert

that the sequence jj3;j converges weakly to zero if 2 is a sigma alge-

bra [6]. The following example shows that, in general, this is not the

case.

Example 1. Let e,= {8»/}jai, &u=l if i=j and 5,-y = 0 if i^j. Then

{e,-} is a sequence of unit vectors which is a basis for the space c0 of

sequences of real numbers which converge to zero. Let 20 be an alge-

bra of subsets of a set So such that there exists a bounded sequence

{7,} of elements of H(S0, 20, R) satisfying

(1) lim,y,(£)=0, ££20and

(2) the sequence {7;} does not converge weakly to zero.

Let yEH(S0, 2„, c„) be defined by y(E) = ZerY,-(E).
Example 1 shows that if we wish to conclude that |/3i} converges

weakly to zero, then we must impose additional conditions some-

where. We shall first consider a condition on /3 and then conditions on

B. The condition which we shall impose on /? is a natural condition
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to impose when seeking to compare f3 with an element a of H(A) (see

[4, particularly the concluding remarks]). The conditions, Gi and

G2, on B are technical conveniences which, fortunately, are of suffi-

ciently common occurrence to warrant their introduction.

Before proceeding to Theorem 1, let us recall that if uEH(R) and

P£2, thenn(p,P) = sup{u(F); PES, FEE} -inf {u(F); FEZ, FEE}
is the variation of p on P.

Theorem 1. Suppose that lim||j3(p)|| =0 whenever {Fj} is a se-

quence of pairwise disjoint elements of 21. Then the sequence {/3t} con-

verges weakly to zero.

Proof. Suppose, on the contrary, that {/?<} does not converge

weakly to zero. Then, by Theorem 3.1 of [ll] (cf. [5]), there exists

e>0 and a sequence {Ep} of pairwise disjoint elements of 2 such that

| Ep0>(P?>)| >3e for infinitely many positive integers i. Let ix be

the least such positive integer, and let pi be the least positive integer

satisfying | Epspi @ifEP) \ > 3e. Let Pi = UPSP1 Ep. The following facet

of this construction is not necessary to establish Theorem 1 but will be

convenient for our proof of Theorem 2. Let qx be the least positive

integer greater than pi for which Epbgi v(Pn> Ep)<e. Let kx be the

least positive integer such that i^kx implies that Ep<3i|$»(P'j>)| <e.

This completes the first stage of this construction; to set the pattern,

the second stage follows. Let i2 be the least positive integer greater

than kx (kx^ix) such that J Ep0i2(Pp)| >3e, and let p2 be the least

positive integer satisfying | EpsP2 /3;2(Pp) | >3e. Let F2 = DqiipSP2 Ep.

Then |p\-2(p>)| > | Epsp^CEp)! — Ep<8i|/3i2(jEp)| >2«- Let q2 he the
least positive integer greater than p2 such that Eps«2 v(fih, Ep)<t.

Let k2 he the least positive integer such that i>k2 implies that

Ep<s2|jSi(Pp)| <«• Repeating this process inductively, we obtain a

sequence {p,} of pairwise disjoint elements of 2 and an increasing

sequence ix, i2, • • •   of positive integers such that

(1) p\.(P)>2eand

(2) if k^j, then

| p\-.( U P„) |   S -    E    I 0ifEP) I

+ I     E     Pi,(Ep) I - E »(&,-, Ep) > e.
sy-iapspj pitj

Notice that up to now we have not used the hypothesis of Theorem 1.

Invoking now the hypothesis ||/3(Py)||—>0, a contradiction obtains

from (1) and |jfc,(Fy)| g2AfB||/3(Py)||.
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The following example shows that the converse to Theorem 1 is

not true.

Example 2. Suppose that N is the set of positive integers and that

T is the sigma algebra of all subsets of N. Suppose that P is the linear

span, over R, of the sequences e,= {5,-y}yfei, is normed by

|| {.t} ;|| = sup{ | xx\ , (| x2\  +  | x8| ), (| x4|   +  | x6|  +  | *«| ), • ■ • },

and let X denote the completion of P. Then X is represented as a

space of sequences. Moreover, because lim x, = 0, whenever x= |x,}

E X, it follows that {<?<} isa basis for X. Fori^l, \et(3iEH(N, F, R)

be defined by p\(P) = l/fe if iEEk = {i: (k-l)k<2i^k(k + l)}
and iEE, and p\-(P)=0 otherwise. Let l3(E) = E«A(P)- Then
@EH(N, F, X) and, hence because T is a sigma algebra, {j3,} con-

verges weakly to zero. Moreover, lim v(j3{, S)=0 which of course,

also implies weak convergence to zero. Nevertheless, {Ek} is a se-

quence of pairwise disjoint elements of F and |||8(Pa)|| =1, k^l.

If {/3j} is a sequence of elements of H(R) satisfying 2ii(/3;, S) < <x>

and /3 is defined by (3(P) = E&ifr(P)< then (3EH(B) and lim||/3(P;)|| =0
whenever {Pi} is a sequence of pairwise disjoint elements of 2.

(Even more is true, namely, 2||/3(P;)|| < °o.) Thus additional condi-

tions on B are not necessary in order that the hypothesis of Theorem 1

be satisfied. We shall introduce two growth conditions on a Banach

space with basis and show (Theorem 3) that one of them implies the

hypothesis of Theorem 1.

The statement that {bt} satisfies condition Gi means that if each

of M and e is a positive number, then there is a positive number

5 = o(M, t) such that if n is a positive integer, x=^jiinbiKi,

y = bn+x\n+x, ||x|| gM, and ||y|| ^e, then ||x+y|| ^J|x|l+5.
Notice that if condition Gi is satisfied, then {bi} is a monotone

basis: || Ei£i»&»X;|| g|| E«'sm-i &<X<||. We might also mention that

5(M,e) = M8(l,e/M).
The statement that {bi} satisfies condition G2 means that if

(M, e) is a pair of positive numbers, then there is a positive number

y(M,e) such that if lgw<p, x= E*'sn &;X,- y = E«<-sp ^iX,-, ||x|| g if,

and ||y|| ^e, then ||x-f-y|| ^||x||+7(Af, e).

It is clear that if {bt} satisfies G2, then it also satisfies Gi (o(M, e)

2^7(M, e)). We are unaware of an example where Gi is satisfied but

G2 is not. We shall next show that if Gi is satisfied, then {p\} con-

verges weakly to zero. Then we shall show that if G2 is satisfied, then

the hypothesis of Theorem 1 is satisfied.

Theorem 2. Suppose that {b{} satisfies condition Gx- Then the coeffi-

cient functionals /?,- converge weakly to zero.
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Proof. Suppose again that {p\} does not converge weakly to zero.

Then all but the last sentence of the proof of Theorem 1 applies. Let

M = MB\ /3| »(5). Let & be a positive integer satisfying kb> M, and let

E = \JjikFj. Then the contradiction M<5k< Zjs*(|| Z»sv bnpn(E)\\

-|| Zn<^A(£)||)g|| Z»*uM»(£)|| £MB\\I3(E)\\ £M*|/3|.(S) fol-
lows from (2) of the proof of Theorem 1 together with the hypothesis

of Theorem 2.

Theorem 3. Suppose that {&,} satisfies condition G2. Then

lims||j3(£,-)|| =0 whenever {£,•} is a sequence of pairwise disjoint ele-

ments of 2.

Proof. Suppose on the contrary that there exists e>0 and a se-

quence {En} of pairwise disjoint element of 2 such that ||j8(£B)|| >3e,

w^l.Then there exists a positive integer k\ such that || Z»'s*i 6ij3,(£i)||

>3e and, moreover, if kx^p<n, then || Zj><'s» bipi(Ex)\\ <e/2. Let

»i = l. There exists a positive integer n2 such that Z>'s*i Zia»s

v(j3i, Ej)<e. There exists a positive integer k2 such that

|| Z bMEn2)\\ > 3e
*£*2

and, moreover, if k2^p<n, then \[2^jp<isnb$i(Eni)\\<e/22. There

exists a positive integer n3 such that Z»a*2 Z/ani^G^ti £,)<«.

Iterate this procedure. Let m be a positive integer. Then

|| Z *&•( U £„y)|| ̂ || Z bipi(E»i)\\ - Z   Z »(ft, £,) > 2e.
*£&i JSm »g&i t£^l   i^«2

For />>1, let Sp= [i; kp^i<i^kp}. Then, for Kp<mt

|| Z bfii U (£„y)||

^ - Z II Z bi0i(E»j)\\ + II Z M*(£»,)|| - Z    Z Hft, £y)
J<p      tesp ies„ ieSj, Jgnp+1

> - 6(1/2 + 1/22 + • • • + 1/2"-1) + 3e- e> e.

For p = m, the preceding inequalities are easily modified to yield that

|| Zies,, biPi\JjSm(Enj)\\ > — e + 3e = 2e. Let m be a positive integer

satisfying my(\B\,(S), e)> |/3|.(S), and let H = UjimEnj. Then

¥(B)\\ ̂  || Z bMH)\\ + Z (II Z *ifc(ff)|| ~ II    Z   ftA(ff)||)

^ «7( |/3 |.(5), e) >   |/J 1.(5)

which is impossible.
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Let us now turn to a discussion of some Radon-Nikodym theorems.

We begin with brief resume of some pertinent history.

The classical Radon-Nikodym theorem (e.g. [9, Theorem III.10.2])

asserts that if 2 is a sigma algebra and X is a countably additive ele-

ment of H(C) where C denotes the complex numbers, then X can be

given an integral representation with respect to a nonnegative, count-

ably additive element p of H(R) if, and only if, X is absolutely con-

tinuous with respect to p.

In 1939, S. Bochner published a generalization [l] which removed

the restrictions that 2 be a sigma algebra and that the set functions

be countably additive. A representation for the case where pEH(R)

appeared [2] in 1962. Theorem 111.10.7 of [9] supplements the

classical theorem by allowing p to be complex valued, and recently

C. Fefferman [10] extended this latter result to the case of a general

algebra of subsets of a set. Thereafter, E. Green and the author [7]

gave a proof of Fefferman's result, based on [2]. The approach used

in [7] will be applied hereinafter to elements of H(B).

While there are several possible definitions of absolute continuity

which might be appropriate, we choose the following.

The statement that aEH(A), A a Banach space, is absolutely

continuous with respect to f3 (a<5C/3) means that if e>0, then there is

5>0 such that if |ftj,(P)<5, then | a |,(£)<<=.

The statement that a is singular with respect to (3(a -Lft means

that if e>0, then there exists P£2 such that \()\.(E)<e and

\a\,(S-E)<e.
Denote by L(B, A) the space of bounded linear transformations

from B to A.

The statement that T is a (2, M)-simple function means that P is

a function on 5 to M and, moreover, there is a finite partition

ir = {Ei}i<;n of Sin 2 (i.e., P,E2, i^n) such that Pis constant on the

elements P< of ir.

Henceforth, suppose that A has a basis {a{} oi unit vectors.

Theorem 4. Suppose that A is n-dimensional, that B is m-dimen-

sional, and that a<<Cft Then there is a sequence Tk of (2, P(P, A))-

simple functions such that Umk\a — fTkd^\B(S)=0.

Proof. From a «j3 and |a,(P)| g2MA||a(P)|| it follows that

a,«ft Moreover, letting aa=a!iAft, where a.Aft denotes that part

of a, which is absolutely continuous with respect to ft (see e.g. [2]),

and aij=(at— Ek;<*<*)Aft for i<j^m, it follows that a«la,-, if

j^k and also that a,-= E/s»>aa- For ig» and jgm there is a se-

quence {fijk}kn of (2, P)-simple functions such that
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lim* v(atj — ffijkdBj, S) = 0.

Let Tk(x) be the transformation whose matrix with respect to the

bases {a,} and {bj} is given by (fijk(x))i.j. Then Tk is a sequence of

(2, L(B, A)) simple functions and lim* \a-fTkd&\s(S)=0.

In the next theorem it will be convenient to have the following

notation. For each positive integer m, let Bm be defined by Bm(E)

= 2ZismbiBi(E), ££2. Then 8">EH(Bm) where Bm denotes the

closed linear span, in B, of bi, ■ • • , bm.

Theorem 5. Suppose that limm||8 — /3"'|s(5) =0 and, moreover, that

a<<C/3. Then there is an increasing sequence {mk} of positive integers

and a sequence Tk of (2, L(Bmk, Ak))-simple functions such that

| ak-fTkdB\ e(S) < I/k, where fTkdB is defined to be fTkdBmK

Proof. Let e>0. Then there exists 5>0 such that if \B\,(E)<8,

then |a|.(£)<£. Let tn satisfy |j8-j3»|,(5)<5/2. Then |/3"|.(£)

<5/2 implies that \a\ ,(£) <e. Notice that |j8| .(£)<5/(2MB) implies

that | j8"|.(£)< 5/2, and that if |a| ,(£)<£, then |a<|.(£)< AT^. For

£2jl, choose £* so that AfA£/t<l/(4&2). Then choose 8A(8*<S4_i) and

mk(mk>mk-x) in accordance with the preceding statements. For

*^1, let aix = ai/\Bx and, for j>l, let a,y=(a,— Zp<j atp) A)3y. Let

7,7= Zps;a>'j>- Then a,j±aip if j^p, and (a(— 7,7) ±Bp for pgj.

HenceifX>0and pgj, then there exists £p£2 such thatv(Bp, £P)<X

and v(ai—yij, S — Ep)<\. If F=0psj Ep, then v(a— 7,7, S—F)<j\

and ^(|8P, P)<X, ^gj, which implies that ||8>'| .(P) gjX. If j — mk and

X satisfies m*X <min(5*/2, l/(4£2)), then o(a,—yimh, S-P)<l/(4&2)

and |^m*| e(F)<ok/2. This latter inequality, together with the hereto-

fore assigned properties of 5*, implies that |a,| „(F) <l/(4&2) and, in

turn, that v(at, F)<l/(2k2). Then, since v(at, £) =n(a,—7,7, £)

+v(ya, £), ££2, i, j^l, it follows that v(ai-yimt, F)<l/(2k2)

and, hence, v(cti — 7<mt, S)<3/(4&2) for t^l. Because ay<3C/3j- there

are (2, A)-simple functions /</* such that v(aij — JfijkdBj, S)

<l/(U2mk). Thus v(yimt-f2ZismkfijkdBj, S)<l/(ik2) and, hence,
v(ai — f2~LismkfakdBj, S)<l/k2. From this latter inequality it fol-

lows that if Tk(x) is the matrix whose (i, j)-th entry is fijk(x) for

ig& and jgWi (and zero otherwise, when necessary, in order that Tk

have the proper domain and range), then |a* — fTkdB\s(S) g l/k.

Corollary 5.1. For each positive integer n, limk\ an — fTkdB\ a(S) =0.

Corollary 5.2. For each ££ Z» a(E) = lim* fBTkdB.

Corollary 5.3. 7/lim„|a-an| S(S) =0, then Umk\a-fTkdB\ ,(S) =0.
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Example 2 shows that norm convergence of the sequence {ft} to

zero is not a sufficient condition in order that lim | j8 —y3n| S(S) =0. The

following example shows that |||j8||| < °° is not a necessary condition

in order that Hm||8-/3"|.(S)=0, where |||j3||| =sup{2||j3(P,-)||;

tt= {Ei} is a finite partition of S comprised of elements of 2}.

Example 3. Suppose that S is the set of positive integers, 2 is the

algebra of all subsets of S, B = l2, bi= {8</}/si, ft(P) = (1/i) Ejsb oijt

and ftP)= E^f)8i(P). Then ft£P(P), {bi} satisfies condition G2,

1||/3||| = « andlim|(8-/3»|.(S)=0.
We conclude with conditions which are sufficient to insure that

lim|/3-j8»|.(5)=0.

Theorem 6. Suppose that ||||8||| = M< oo and that {&,■} satisfies

condition G2. Moreover suppose that if

xk = E biXki    and    yk =    E   biXki,        k g m,

then

E (** + y*)   —   E**   = E (11** + y*ll ~~ IWI)-

rAe»lim|/3-l8»|,(5)=0.

Proof. Let «>0. Then let 5 be a positive number such that

if || Efsn^Xill gAf and || E»<is»> &<X,-|| ^e, then || E<sm 6*X«|[
= 11 E<s» ^>'Xi| +5. Let 7r= {pt} be a finite partition of 5 in 2
satisfying E« |0(P«)|| > M—o/2. Let w be a positive integer satisfying

Ei||08-f5*)(£.-)||<8/2 if k^n, and let jfc^n. Then E*l|0*(£<)||
>M— 8. Suppose that |j8— ft| s(S)>e. Then there is an element P

of 2 satisfying ||(j8-|3*)(E)||>e and, hence, (|||3(P)|| -||ft(P)||) ^8.
Let 7ri be the partition of 5 generated by ir and £, let Ft = EiC\E and

let Gi = Ei — E. Then the contradiction

E HTOll - E ll/TOll + E (H/Wll - ||/W||)

+ E(||/3(G,-)||-||^(Gi)||)^ Elk(P)||

+ (||/3(P)|| - ||/3*(P)||) >(if - 8) + o = M

obtains.
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