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1. Introduction. It is well known that a real-valued function can

be continuous in each fixed variable on the product of two intervals

and yet fail to be continuous while, if a function is complex analytic

in each fixed variable on the product of two open disks, then the func-

tion is complex analytic and hence continuous. The purpose of this

note is to consider an intermediate case.

Let / be a complex-valued function defined on a bicylinder B

— BxXB2 with the property that/(z, •) is continuous for fixed zGPi

and/(-, w) is holomorphic for fixed wEB2. We shall say that f EH

on B if these conditions hold. In [3], we asked whether or not such a

function/ must be continuous, thus, whether or not Hartogs' classical

theorem could be generalized to this extent. In this note we shall

give an example to show that / need not be continuous and we also

give some conditions which are sufficient to insure the continuity of/.

2. Counterexample. Before exhibiting the example we need the

following result.

Lemma. Let fEH on B — BxXB2. Then f is continuous on B if and

only if each sequence of functions {/(•, w„)}, where lim wn=WoEB2,

converges almost uniformly on Bx-

Proof, "if." This follows from the equivalence of continuous

convergence and uniform convergence. See [l].

"only if." This follows from uniform continuity.

Now let B be the unit bicylinder, P = {(z, w): | z | < 1, | to | < 1}.

Using Runge's theorem there exists a sequence of polynomials

{Pn(z)} which converge to zero on | z| < 1 but the convergence is not

uniform on any neighborhood of any point of the real axis in | z| < 1.

Using this sequence we define a function F on B as follows:

(i) on the circles in | w\ < 1 of radius 1/m, n = 2, 3, ■ ■ • , let F(z, w)

= Pn(z). Let F(z, 0) = 0.

(ii) For w, with l/(w-fT)<|w| <l/n, n = l, 2, ■ ■ ■ , consider the

circles C< with radius r = t/n + (l — t)/(n + l), 0</<l. For wECt

define

F(Z, W)   =   tPn(z)  +   (1   ~  t)Pn+x(z).
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Then P£rP on B but is not continuous by virtue of the lemma.

3. Another characterization. Let P£ H on the unit bicylinder.

Define the "radius of continuity" as follows. For z0, with |zo| <1,

R(z0) is the distance from w = 0 to the nearest point w0 such that/ is

discontinuous at (z0, w0). Using a method due to Rothstein [2] we

shall prove the following theorem.

Theorem. Let f EH on B, where B is the unit bicylinder. Then f is

continuous if and only if R is superharmonic.

For the proof we shall need the following results.

Proposition 1. Let S be a complete metric space and F a family of

continuous real-valued functions on S. Then, if for each xES, the set

!/(x): /£ P} is bounded, there exists a closed sphere U of positive radius

in S and a number M such that \f(x) | g M for all fE F and all xE U.

Proof. This is well known.

Proposition 2. Let h be superharmonic in \z\ <1 with h^O. Let

S„, S, Tn be points in \z\ <a<l with Sn-^S and | Tn — S\ >d>0.

Suppose Jn is a Jordan arc joining S„ to Tn in \z\ <a. Then if h(z) ^r

on all Jn, vie have h(S) ^r.

Proof. The proof is in [2].

Now let D(k) denote a domain in \z\ <1 for which R(z)^k and

which is maximal with respect to this property.

Lemma 1. Given k such that 0<&<1, there exists a D(k).

Proof. We need only show that there exists an open disk D con-

tained in I 21 < 1 such that / is continuous on D X { | w\ g k }.

To see this we apply Proposition 1 to the family {g,„(z)}, where

gm(z) =   |/(3, w)\,     I z\   g 1/2,     I w\   < k',    k < k' < 1.

Hence there exists an open disk D in \z\ < 1/2 and a constant K such

that |/| gX on DX {\ w\ <k'}. Then using Vitali's theorem and the

lemma of §2 we get our result.

Note that if f EH on B and is locally bounded, then/is continuous.

Lemma 2. // q is a boundary point of D(k) and \q\ <1, then there

exists a sequence qn—>q with R(qn) <k.

Proof. Clear.

Lemma 3. Let {Dn(k)} be a sequence of domains of type D(k). Let

20, |z0| <1, be a limit point of the Dn(k) and let dn be the diameter of

Dn(k). If R(z0) <k, then lim d„ = 0.
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Proof. Apply Proposition 2.

Proof of the theorem. The "only if" part of the theorem is

trivial. For the "if" part, let k be such that 0<&<1. We know by

Lemma 1 that there exists a D(k) in |z| <1. Suppose this D(k) has a

boundary point zi, with | Zi| < 1. Let Kx be a closed disk in | z\ <lwith

center Zi and let M be the set of all boundary points q of all domains

of type D(k), where gGint Kx, and let M be the closure of this set.

Using Proposition 1 on Mf\Kx there exists a closed disk P2CPi with

center z2E Afanda number m>0 such that |/(z, w)\ gw? iorzEMC\K2

and \w\ <k.
By Lemma 2, there exists in P2 a point z3 with zsGint K2 and

R(z3) =kx<k. Now let d>0 be chosen small enough that the bound-

aries of all D(k) which have points in common with K3= {\z—z3\ grf}

are completely contained in M(~\K2. This is possible by Lemma 3.

Then by the maximum principle we have \f(c, w)\ gm for |w| <k

and all cED'(k) where D'(k) is any domain of type D(k) which inter-

sects K3. But using Proposition 1 we see that these intersections must

be dense in K3 and hence / is bounded and thus is continuous on

int P3X {| w\ <k}. This contradicts the fact that R(z3) =kx<k and

proves the result.
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