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1. Introduction. The purpose of this paper is to discuss the exis-

tence and uniqueness of solutions to an infinite system of nonlinear

oscillation equations of the form

(1.1)     T'J + / (a0 + axf: tlti Tj=0,       j = 1, 2, • • • , °o,

where the constants a<> and ax satisfy the conditions a0^0 and ai>0

(the prime in (1.1) indicates differentiation with respect to /). The

initial conditions on (1.1) will be taken as

(1.2a) r,(0) = ay,

(L2b) Tj(0) = 0j.

Equations of the type (1.1) are related to the Duffing equation

(cf. [l]), and arise in attempting to find Fourier series solutions

oo

(1.3) W(x, t) = X) Tj(t) sinJTrx/L,
3-1

to the nonlinear partial integro-differential equation

(1.4) Wtt-(lIo + Hxf   Wi(t,t)2di\wxx = 0,

(Ho^O, Hx>0). Equation (1.4) describes the small amplitude vibra-

tions of a string in which the dependence of the tension on the defor-

mation cannot be neglected (cf.  [2],  [3]).

The equations (1.1) form an infinite Hamiltonian system, and in

fact there is no difficulty in showing that any solution of (1.1) satisfies

the condition

(1-5)       ~( ± (r'j)2 + ao ±jYj +1 ( Z/r:)2) = 0.
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At first glance it would appear that if the initial conditions (1.2)

satisfy a finite energy condition, i.e.,

OO 00 ~       /     00 \   2

(1.6) h = £ ft + a0 Z/«;2 + V ( Ufa*)   < oo ,
j-l /-I 2   \ y_j /

then (1.1) should have a solution for all t>0. Indeed this is the case

for finite systems of the form (1.1) since the finite system

(1.7) f/ +f (a0 + ax £ flti Tj = 0,       j=l,2,---,N,

has associated with it a Lipschitz constant (depending on N). Thus

the method of successive approximation (cf. [4]) may be used to

show the existence of a solution to (1.7) locally, and the continuation

of this solution is guaranteed by the fact that the energy—and hence

the solution and its derivative—remains bounded. However, the

infinite system of equations (1.1) is not Lipschitz continuous because

of the unbounded nature of the coefficient of Tj as j—>oo. Thus the

method of successive approximation fails and an alternative proce-

dure is necessary.

In §2 of this paper, it will be shown that under certain conditions

on the initial data (1.2), solutions of the finite system (1.7) converge

to a solution of (1.1) as A7—>oo. In order to guarantee this it will be

necessary to require that the initial data (1.2) satisfies a condition

stronger than the simple finite energy condition (1.6). In §3 it will

be shown that the solution of (1.1) satisfying the initial conditions

(1.2) is unique among a certain class of functions.

2. Existence. In proving the existence of solutions to (1.1), it is

convenient to define a set of functions Tj,n as follows: iorj^N, Tj,N

is to be a solution of the finite system of equations (1.7) and satisfy

the initial conditions (1.2) for j=l, 2, • • • , N, and for j>N set

Tj,n — 0. The functions Tj,n are of course also solutions of the infinite

system (1.1), i.e.

(2.1) T"N +fANTj,N = 0,       j = 1, 2, • • • , oo,

where
00

(2.2) Atr = ao + ax2-,l Ti,N.
t~i

If in addition the initial data (1.2) satisfies the finite energy condition

(1.6) it follows that (cf. (1.5))
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(2.3) ± (T'j.*)2 + aQ ±/tIn + -£ ( tfti*)' ^ h.
i-l j-1 2  \ J=i /

Thus there exist constants Mx and M2 independent of N such that

(2.4a) £ (Tj.n)* < Mx,

00

(2.4b) £/P/U < Mt.
y-i

It is a consequence of (2.4b) that the functions An are uniformly

bounded independent of N. If it could also be shown that | A'N\ was

uniformly bounded independent of N—so that the sequence {An}

is not only bounded but equicontinuous—the existence of a uniformly

convergent subsequence would follow from the Arzela lemma (cf.

[4]). Indeed the demonstration of the uniform boundedness of | A'N\

is the key step in proving the existence of solutions to (1.1). In what

follows it will be necessary to assume that the initial data satisfies

the conditions
00

(2.5a) £/&<«>,
y-i

(2.5b) £/«/ < ••
y-i

This requirement on the initial data is, of course, stronger than the

energy condition (1.6).

Lemma 2.1. If the initial data (1.2) satisfies the condition (2.5), and

oo

(2.6) a0 + ax zZj «/ ^ 0,
i-i

there exists an interval 0^t<tc, such that \A'N\  is uniformly bounded

independent of N on any closed subinterval 0^t^t*<te.

Proof. After differentiating the function An, the Schwarz in-

equality yields

\An\  ^2a1J2f\T,,N\\T'i.N\
i=i

(2.7) ^2ai(zfTl,N'tl\T'l.N)i\m
Im i=i '

I °° «i in
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Thus the object is to estimate the functions | TjN\. For this purpose

define a function EitN as (cf. [5])

(2.8) EiJr = %^- + T),N ̂  0.
3 An

The condition (2.6) guarantees that EjiN is defined in some neighbor-

hood of t = 0 when N is sufficiently large (the condition (2.6) is equiva-

lent to the requirement that the partial differential equation (1.4) be

hyperbolic at 2 = 0). The functions Tj,n are solutions of (2.1); there-

fore differentiation of (2.8) yields

,,,, j An((T'j,n)\^ \An'\
(2.9) EhN = - — (    . 1 ^—-Ej,N,

An\ 3 An I An

or equivalently

a'  \ A'n\      \J—!- drj .

Estimates on both Tj,_y and T'jN follow from (2.10). Thus it is found

that

2 2     2 2 /    C '    I   An I \
(2.11a) Tj,n Is (fij/j AN(0)+ «y) exp ( J      ^—— dr j ,

(2.11b)      (T'j,Ny/fAN g «3)/fAN(0) + a') exp (J    ^—^- dr\ .

Define Kn as

00

(2.12) Kn = Z (f$s/AN(0) + fa)),
3=1

and note that finiteness of (2.12) follows from (2.5). In addition, the

fact that AN(0) ^4N+i(0) shows that

(2.13) P^+i S Kn-

Combining (2.11b) and (2.7) it follows that

(2.14) \AN\£2<OiAirKi,explj drJV     ,
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or

d       (     1  r' I a'n\     \
(2.15)-exp (---L dr\ ^ (aiKNyi2 ^ (aiKM)112,

dt        \      2 J o      AN        I

if N^M. It is a consequence of (2.15) that

/ 1   r ' \ a'n I     \
(2.16) exp—        -!- dr)^ 1/(1 - (axKMY'H)

for all A^ M and all t in the interval

(2.17) 0^t<tM= l/(axKM)112.

Combining (2.14) and (2.16), it is clear that when N^M and t is in

the interval (2.17), | A'x\ satisfies the bound

(2.18) \An\   ^2(axKM)lt2AN/(l - (axKM)ll2t).

Since An is uniformly bounded independent of N, (2.18) shows that

| A'N\ is also uniformly bounded independent of N in the interval

(2.17). In fact, if K is defined as

(2.19) A =   lim   Kn

and tc is defined as

(2.20) tc = 1/MO1'2

then \AN\ will be uniformly bounded in any closed interval O^t

^t*<tc.    Q.E.D.
It is of interest to note that, at least in the case where a0>0, the

interval 0^t<tc grows arbitrarily large as the initial data (1.2)

approaches zero.

In view of the preceding remarks, Lemma 2.1 guarantees the exis-

tence of a subsequence {^4^,} which converges uniformly to a (con-

tinuous) function A(t) on any closed subinterval 0^t^t*<tc. Let Tj

be the solution of the (linear) equation

(2.21) T'/+j2A(t)Tj = 0,

satisfying the initial conditions (1.2). There is no difficulty in showing

that Tj,Ni—*Tj and T'jN.-*T'j on the interval 0^tf^t*<tc. The exis-

tence of solutions to (1.1) is settled by the following

Theorem 2.1. The infinite system of equations (1.1) have a solution

satisfying the initial data (1.2) on any closed interval 0^t^t*<tcif the

initial data satisfies the conditions (2.5) and (2.6).
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Proof. It is only necessary to show that the solutions of the linear

system (2.21) furnish a solution of the system (1.1). For this purpose

it suffices to show that

00

(2.22) A(t) = ao + axT.fTl
i=i

The series which occurs in (2.22) converges since (cf. (2.11) and

(2.16))

(2.23a) T\ =   lim   rjjr, ^ (ffi/l2A(0) + a\)/(i - axKu)    t),

(2.23b)    (T[)2 =   lim  (PU.)2 ^ A(0i/A(O) + fa\)/(i - (aiKM)    t),
AT;--

for arbitrary M, and thus the series in (2.22) is majorized by a con-

vergent series. The equality (2.22) follows from the estimate

00

,<, oa\     A - a0- axY, ?t\   g  | A - An, \
(.2.24; j=l

n oo

+ «i Z I* I Ti - TUNi |  + ai   E ?(T\ + t],n,).
1=1 l=n+l

The right side of (2.24) can be made arbitrarily small by first choosing

n, then choosing A7',-.    Q.E.D.
The solution of (1.1) which has been constructed above has the

properties

(2.25a) ]£/?/<«,
y-i

(2.25b) Z/(7y)*< *,
y-i

and

(2.26) A(t)>0

in the interval 0^t<tc. The convergence conditions (2.25) are an

immediate consequence of (2.23) and (2.5). The condition (2.26)

follows from the fact that if ^4 (77) = 0 for some value t = n in the inter-

val 0£t<te, both a0 = 0 and Tj(v) =0 for all./ (cf. (2.22)). If Tj(v) =0
for all j the energy identity (1.5) shows that there exists at least one

value of j such that P/(77)^0. For this value of j, the inequality

(2.23b) is violated at t = r/. This contradiction proves (2.6).
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3. Uniqueness. In this section it will be shown that the infinite

system (1.1) has at most one solution satisfying the initial conditions

(1.2) and the conditions (2.25a) and (2.26).

Assume Tj is a solution of (1.1) satisfying (2.25a) and (2.26) in

some interval 0^t<p. The function A (cf. (2.22)) is differentiable in

the interval 0^t<p since the Schwarz inequality implies

(3.1) \A'\   ^2ai\tlliTif:(T'l)y2.
\ i—x i=i i

In view of (1.5) and (2.25a), both of the sums in (3.1) converge and

are, in fact, uniformly bounded on any closed subinterval O^t

1kp*<p- In addition, the assumption that A(t) >0 for 0^t<p implies

that there exists a constant M such that

tor0^t^p*<p.

Let Tj and Sj be solutions of (1.1) satisfying the initial conditions

(1.2) and the conditions (2.25a) and (2.26) for 0^t<p, i.e. Tj is a

solution of (2.21) where A is given by (2.22) and Sj is_a solution of

(3.3) S" + j*BSj = 0

where
oo

(3.4) B = ao + axzZ fa,.
1=1

The difference

(3.5) Uj = Tj - Sj

will be a solution of

(3-6) U/'+ j'A Uj = j\B - A)Sj,

and satisfy the initial conditions

(3.7) £7,(0) = £7/(0) = 0.

The object is to show that the only solution of (3.6) satisfying (3.7) is

the trivial solution. If it could be shown that Uj, or some positive

definite form involving Uj, satisfied a Gronwall inequality (cf. [6])

the result would follow. However, due to the form of (3.6), it is not

clear that there exists such an inequality for Uj, and thus a different

approach is necessary.
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It is convenient to begin by finding bounds on the solutions of (3.6).

For this purpose define a function

(3.8) Ej = (U'jf/fA + U) ̂  0.

After differentiating (3.8), the differential equation (3.6) yields

(3.9)
\A'\ \b- a   ,    ...    ,

<- F- + 2-     77       S1-

A A

or equivalently

a' I A' [      \   r ' I B - A I   .     ,. .      .-L dr j j- | Uj \\Sj\ dr.

After summing over j (3.10) becomes

oo /      /•  I   \   J^l j \      /*  '

(3.11) £ Ej ̂  2 exp M     i—1 drj J    I(r)dr

where

(3.12) 1(1) = J-L. Z [ I/J    5y | .
-4        ,_i

The function /(/) may be estimated using the Schwarz inequality.

Thus

oo

\B- A\   <axY.Jt\Si+ Tj\\ Uj\

(3.13) 5-1i   °° °°      ->1 1/2

^ax\T,3(.Sj+Tj)  ZU-j\     ,
\ 3=1 3=1 /

and

(3.i4)       z i u'j11 Sji g {z/5- z (p;)V/|1/2,
3=1 W-l 3=1 '

so that

/  «   (U')2 °°     oi 1/2

(3.15) /(/) 5S G(/) <^ Z Vf S ^|
ly_l     jM    y_i       J
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where

2    2

(3.16) G(t) =aAiZ3-^- Zj^Sj + Tj)2\

The important feature to observe about G(t) is that it is bounded on

any interval 0^t^p*<p. Thus there exists a value of t, say t = h, such

that

(3.17) texp( )     ---drj G(t)<l

for all t in the interval O^t^h.

Lemma 3.1. I(t)=0 for t in the interval O^t^tx.

Proof. Assume the maximum value of I(t) in the interval O^t^tx

occurs at t = y\. The inequality (3.11) implies that

(3.18) Z Ej(v) ^ 2V exp ( j ' -Lii dr\ I(v)

or (cf. (3.15))

00

Z Ej(v) ̂  2V

<3'19)"   <r:^>^MAl-
However, if l(n)^0, (3.17) and (3.19) imply that

(3.20) £ £;M < 2 ̂  Z Vf ^ ^)

or, recalling the definition of Ej (cf. (3.8)),

02i)        f^T,(^n>
This contradiction shows that 1(77)= 0, and hence l(t)=0 for O^t

£fa.    QE.D.
The fact that l(t)=0 in the interval 0 g^^ combined with (3.11)

shows that Uj(t)=0 and £7/(0=0 in the interval. However, this

result is easily extended to the interval O^Kp. Assume there exists

some value of j such that Uj(t)^0 for 0 ^t <p. Let t\j be the greatest

lower bound of points for which Uj^O and let ?7 = g.l.b. rjj^ti. Since
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the functions Uj are continuously differentiable for 0^t<p it follows

that Uj(n) = Uj (n) = 0. Since n <p the development of this section

may be repeated (with t = n as the initial point) to show that Uj and

Uj vanish in some interval to the right of t=n. Thus n could not be

the greatest lower bound of points for which Uj does not vanish. This

contradiction proves

Theorem 3.1. The system of equations (1.1) have at most one solution

satisfying the initial conditions (1.2) and the conditions (2.25a) and

(2.26).

The solution of (1.1) which was constructed in §2 satisfies the con-

ditions (2.25a) and (2.26). It follows that if the initial data (1.2)

satisfies (2.5) and (2.6), the system (1.1) has, on the interval 0^t<tc,

exactly one solution satisfying (2.25a) and (2.26), and this solution

is the limit of solutions to the finite system (1.7). The conditions

(2.25a) and (2.26) may be interpreted in terms of the partial differen-

tial equation (1.4) and its solution (1.3). The condition (2.26) is

simply the condition that (1.4) remain hyperbolic and (2.25a) is re-

lated to the convergence of the Fourier series (1.3). Indeed (2.25a) is

essentially the condition that the Fourier series (1.3) be twice differ-

entiable with respect to x and t. In addition, the condition (2.5) and

(2.6) are related to the differentiability of the initial conditions

W(x, 0) and Wt(x, 0) in the partial differential equation (1.4). Thus,

if the initial conditions W(x, 0) and Wt(x, 0) are sufficiently differen-

tiable, the above discussion proves the existence of a solution to (1.4)

of the form (1.3) in an interval 0 ^ t < tc. Note also that if this solution

does cease to exist for some value of t*ztc the cause will not be the

unbounded growth of the solution (cf. (1.5)), but rather that it ceases

to be sufficiently differentiable.
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