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Let R he the rational number-field, K = R(ux, • • • , um) a finite

ordinary differential extension-field of R. Let u^*—*ca under an arbi-

trary abstract-field isomorphism a of K onto a field Kx. Let the field

of formal power-series Pi((3)) be converted into a differential field

by placing (Ha^z'/jl)' =HajZ'"1/(j—l)\. Then the assignment uf^Ui

= 1iCijZ'lj\   defines   a   differential-field   isomorphism   of   K   onto

R(u\, • ■ ■ , «m).

This is easily proved (see [l, p. 160]). We may note that on

PJmi, • • • , um} the mapping <r is given by H(u)>-^H(u)|i=0 (for

P£F{ [/}). Thus if H(u)y-+H(u)| *„o is an isomorphism, then H(u)

•—*H(u) is an isomorphism. The converse is not true: thus suppose

m = l and w=Wi is transcendental over R; then 77(w)t—*H(u — w(0))

still yields an isomorphism, but H(u)*-+H(u — u(0))\1=0 does not.

As, however, in the proof of a corollary in [l, p. 162] we tacitly

made use of this converse, a correction is necessary. This corollary

reads:

Let K, Kx be finite extensions of the rational number-field R, KQKx,

and let r: K—>K* be an isomorphism of K with afield of meromorphic

functions K*. Then t can be extended to an isomorphism t: Kx-+Kx* of

Kx with afield of meromorphic functions Kx*.

In the definition of a field of meromorphic functions K*, an open,

connected region A intervenes. If Ax is an open, connected subregion

of A, the mappingf-*f\ at (ior fEK*) yields an isomorphism of K*.

It is understood in the above corollary that K* may be replaced by

any isomorphic copy obtained in this way.

Let K = R(ult • • • , Mm), t: uf-*Ui, and let A be the region associ-

ated with K* = R(tlx, • • • , um). The functions &x, • • • , Um need not

be holomorphic, but writing them as quotients of holomorphic func-

tions, letting P be a point of A where the denominators do not

vanish, and suitably restricting A about P, we may assume that they

are holomorphic. We may also assume that P is given by z = 0. Now

consider the mapping H(u)*->H(ii) \ z_0- This is always a homomor-

phism, but may fail to be an isomorphism. However, if 77(m)^0,

then H(u) has only a finite number of zeros in a small circle about P;

we propose to select a new P, avoiding these zeros. Since there are

Received by the editors March 19, 1969.

689



690 A. SEIDENBERG [December

only an enumerable number of H in R{ U}, we can choose a new P

so that H(u)^0 implies H(u)\P^0. Thus, although the converse

spoken about is not true, we operate very much as though it were.

Let Kx = K(vx, ■ ■ ■ , vn). Clearly we need consider only the case

» = 1, Kx = K(v). In case v is transcendental over Ki, we take v

= ~SdjZ'/j[ with d0, di, • ■ • , algebraically independent over

R( • • • , Ca, • • ■ ) and 2djZ'/j\ convergent, where ui = 'ZcijZi/j\ and

H(u)*-*H(u) I z=0 is an isomorphism after the preparations of the last

paragraph.   Then

R( ■ ■ ■ , ca, ■ • ■ , d0, du ■ ■ ■ ) ~ R( ■ ■ • , ua, • • ■ , »o, vi, ■ - - )

and uf-*Ui, j*—>ii defines an isomorphism of K(v) onto a field of

meromorphic functions; this isomorphism extends t.

Now consider the case that v is algebraic over K. By the previous

case, we may assume that some w< are transcendental over R, by

adjoining an extra u if necessary, hence, by the theorem of the primi-

tive element, may assume that uu - • • , um-i are algebraically inde-

pendent and that um and v are primitive elements of K and Xi re-

spectively over R(ui, - - - , wm-i). After any such preparation, if we

lose the assumption that H(u)*->H(u) | 2„0 is an isomorphism, we can

always regain it. Now let v, vi, - - - , vr-i be algebraically independent

(in the algebraic sense) over R(ui, ■ ■ ■ , ram_i) and vT algebraic over

R(ui, ■ ■ ■ , um-i)(v, • • • , vr-x)- Let v='2djZ'/j\ be constructed

so that v is convergent and R({dj}, • • ■ , {cm_i,}, {dj})

c^.R({uij}, - - • , {um-ij}, {vj})—see the proof of the Embedding

Theorem [l, p. 160]. As in that proof, v is the unique solution of a

differential equation Vr—dr=T(z; Vo — do, ■ ■ ■ , VT-i—dT-x) with

specified initial conditions. Hence in this construction we can

always replace {dj} by a conjugate {d*}/R( • • ■ , dj, • • ■)

(i = l, • • • , m — 1) to get an equally good ~Ldfz'/j\ (i.e., ~Z,d*z'/j\ will

also be convergent, as it is the unique solution of the differential

equation Vr—d?=T(z; Vo—d0*, • ■ • , VT-x—d,_x) with specified

initial conditions).

Now we have an isomorphic mapping of 2?(wi, • • • , ram_i, v) onto

a field of meromorphic functions R(tix, • • • , Um-i, »)* and contracting

A, we may suppose R{iii, ■ - - , «m_i, v} consists of holomorphic

functions in A. This isomorphism agrees with t on «i, ■ ■ • , ram-i.

However, it may send um into a Mm5=wOT; in fact, um may not even be

holomorphic. (The possibility that um?*um was not taken into

account in [l, p. 162].) Changing the center z = 0, we may assume

ra* is holomorphic, too; ra* = Zc*jZ>/j!. Moreover we may assume
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P({«!;'},  •  • ' , {Um-Xj}, {umj}, {Vj})

~P({ciy}, •  •  • , {Cm-X,}, {cmi},  {dj}).

Now

R({cij},  ■   •   ■  , {cm-Xj\, Umj}) ^ R({cxj} ,  •   •   •  , {Cm-Xj}, {cmj})

and this isomorphism can be extended to

R({cij\, ■ ■ ■ , {cm-ij}, {cmj}, {dj})

^R({cii}, ■ ■ ■ , {cm-u}, {cmj}, {dj*}).

These df define a v* = Xd*z>/j\, which can replace v. I.e., we have an

isomorphism R(ux, • • • , um, v)c^R(Ux, • • • , um, v*). This isomor-

phism extends r and the proof is complete.

Above we were assuming that K, Kx were ordinary differential

fields. However, similar considerations hold for partial differential

fields.
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