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The following theorem is a special case of [l, Proposition 95], a

result which requires highly technical methods. The proof we give is

elementary.

Let (Rx) denote a family of filtered rings, each with weak algo-

rithm, and for each X let v\ be a filtration for which R\ satisfies the

weak algorithm. By the criterion [2, p. 335] each Rx contains a set

Xx and a subdivision ring K\= {a£i?*: vx(a) go} such that each

element has a unique expression

(1) 23 *rar    («r £ Kx, a.a. ai = 0; x/ = xh ■ ■ • x,n, xtj £ Xx).

The crucial part of the proof is establishing a unique form (1) in the

free product.

Theorem. Let (Rx) be a family of filtered rings with weak algorithm

as above such that K is the underlying division ring of each Rx. Then the

free product P of (Rx) over K has a unique filtration extending the filia-

tions on the factors and P satisfies the weak algorithm for this filtration.

Proof. Letting X — \JXx, each element of P may be written in the

form (1) with X replacing Xx- Assume

(2) J2 xi<xi ~ 2~2 x-rBj,

write xi = Xil® • ■ ■ ®x/( where x^ERxx, • • • , X/(£i?x, and Xi

5^ ■ • • 5^X(. First suppose there is only one summand on the left so

(2) may be rewritten as

(3) x7, ® • • • ® xitai = 2^1 %jBj-

Now 2^X/|8/£x/1P, say 2^,xj&j = xi\2~Lx->'Bj' whence

(4) xlt ® • ■ • ® xi,ar = £ Xj-Bj'

as P is an integral domain. For t — 1, XilER\1 implies the right side of

(3) is xifiti and for t> 1, (4) provides the induction step so the right

side of (3) is X/,® • • • ®xitai in each case.

If (2) is arbitrary, by moving some of the summands to the right,

(3) is recovered so xiat = xjBj for some /, /. It follows that the form

(1) is unique.
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A valuation may be defined on P as follows. If xEX, xEX\ for

exactly one X and we let v(x) =v\(x). For xi=x^ • • • #,•„, a^GA,

define v(xi) = ^? v(xit) and finally extend v to all of P by defining

v(^xiai) =max{i/(x/):ar^O},i;(a) =0 if aGP* andi>(0) = — oo. It is

immediate that v is a filtration of P which uniquely extends each V\.

The remaining conditions that P satisfy the weak algorithm for v

may be easily established by the reader.
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