THE KERNEL OF A STARSHAPED SUBSET OF THE PLANE

BENJAMIN HALPERN

A point p of a subset V of Euclidean two-dimensional space R^2 is a star-center for V provided the line segment $[p, q] \equiv \{tp+(1-t)q \mid 0 \le t \le 1\} \subset V$ for each $q \in V$. The set V is starshaped if it possesses at least one star-center and the set H of all star-centers of V is called the kernel of V. It is an elementary fact that H must be convex. Also it is easy to show that if V is closed then H is closed. We will say that a point $\gamma(t_0)$ on a curve $\gamma:(a, b) \to R^2$, $a < t_0 < b$, is an inflection point provided there is no $\delta > 0$ such that $\gamma(t_0 - \delta, t_0 + \delta) - \{\gamma(t_0)\}$ is completely contained in one of the two open half-planes determined by the tangent line of γ at $\gamma(t_0)$.

The author wishes to thank F. Valentine and A. Heppes for their suggestions on how to shorten the original proof of Theorem 1.

THEOREM 1. If V is a closed starshaped subset of the plane such that the boundary ∂V of V is a continuously differentiable simple closed curve, then ∂H is contained in the union of ∂V and the tangent lines to inflection points on ∂V . If it is also assumed that ∂V is a closed curve with a finite number M of inflection points and $\partial H \cap \partial V = \emptyset$, then ∂H is a polygon with at most M sides.

PROOF. First we will show that closure (int V) = V where int V denotes the interior of V. (The referee has pointed out that if we assume that V is compact, then the Jordan Schoenflies Theorem implies closure (int V) = V.) Since ∂V is a simple closed curve $X - \partial V$ consists of two open connected components, one bounded, inside ∂V , and one unbounded, outside ∂V . An easy connectedness argument shows that if $V \cap$ inside $\partial V \neq \emptyset$ then inside $\partial V \subset V$ and similarly if $V \cap$ outside $\partial V \neq \emptyset$ then outside $\partial V \subset V$. Since V is closed, $\partial V \subset V$ and hence the only possibilities for V are: ∂V , $\partial V \cup$ inside ∂V , $\partial V \cup$ outside ∂V are eliminated because then $\partial V = \emptyset$. ∂V and $\partial V \cup$ outside ∂V are eliminated because each is not star-shaped. To see this just prolong a line from a proposed starcenter through a point of inside ∂V until it hits ∂V as it must since inside ∂V is bounded. Thus $V = \partial V \cup$ inside ∂V and hence closure (int V) = V as we wished to show.

Received by the editors July 22, 1968.

Suppose $q \in \partial H - \partial V$. We will show that $q \in T_p$ for some $p \in \partial V$ where T_p denotes the tangent line of ∂V drawn through p. Since $q \in \partial H$ there is a sequence $q_n \in \mathbb{R}^2 - H$ such that $q_n \to q$. Because $q \in \partial H - \partial V$ we have $q \in \text{int } V$, and so $q_n \in \text{int } V$ for n sufficiently large. Consequently we may assume $q_n \in \text{int } V$ for all n. Next we will show that for each n there is a point $r_n \in \text{int } V$ such that $[q_n, r_n] \subset V$. To see this assume the contrary. Then int $V \subset \{r \mid [q_n, r] \subset V\}$ and since the latter set is clearly closed we must have V = closure (int V) $\subset \{r \mid [q_n, r] \subset V\}$. But this contradicts $q_n \notin H$ and so such an r_n must exist. Clearly, $r_n \neq q_n$. Now note that the point q cannot be on $l(r_n, q_n)$ \equiv the line through r_n and q_n because $q \in l(r_n, q_n)$ would imply $[r_n, q_n]$ $\bigcup [q, r_n] \bigcup [q, q_n] \subset V$, a contradiction. Thus r_n , q_n and q are not colinear. Now we will swing a line segment about the point q_n until it hits ∂V . To do this analytically we let t be the greatest number such that $[q_n, sr_n + (1-s)q] \subset V$ for all $s, 0 \le s \le t$. Since V is closed, t must exist. Next we will show that t>0. From $q_n\in \text{int }V$ and $q\in H$ it follows easily that $[q_n, q] \equiv \{(1-t)q_n+tq \mid 0 \le t < 1\} \subset IV$. Similarly $[r_n, q)\subset \text{int } V$. Also noting that $q\in \text{int } V$ we can conclude $[q_n, q]$ $\bigcup [q, r_n] \subset \text{int } V$. It follows that t > 0. Now set $s_n = tr_n + (1-t)q$. Then q_n , s_n and q are not colinear. Consider the triangle $\Delta = \text{convex hull}$ $\{q_n, q, s_n\}$. Clearly $\Delta \subset V$ and int $\Delta \neq \emptyset$. It is also clear that there must be a point $p_n \in \partial V \cap (q_n, s_n)$ where

$$(q_n, s_n) \equiv \{tq_n + (1-t)s_n \mid 0 < t < 1\}.$$

Next $l(q_n, s_n)$ must be tangent to ∂V at p_n for otherwise a portion of ∂V would extend into int $\Delta \subset V$ and would drag along with it some points of $R^2 - V$. Thus $q_n \in T_{p_n}$. Since ∂V is a closed curve it is compact and thus a subsequence of $\{p_n\}$, which we may take to be $\{p_n\}$ itself, will converge to a point $p \in \partial V$. We will show that the line determined by p and q is tangent to ∂V at p. Denote the angle made by a line l with the x-axis by Al. Now because ∂V is continuously differentiable we have $Al(p, q) = \lim_n Al(p_n, q_n) = \lim_n AT_{p_n} = AT_p$ where we have used the fact that $q \neq p(q \in \text{int } V, p \in \partial V)$ in the first equality. It follows that $l(p, q) = T_p$ and thus $q \in T_p$ as we wished to show.

Next we will show that p is an inflection point of ∂V . We may assume without loss of generality that the origin is at p and the positive x-axis equals the ray from p through q. An open neighborhood N of p in ∂V can clearly be parameterized by a map $\gamma: (-\epsilon, \epsilon) \rightarrow \mathbb{R}^2$ such that

$$\gamma(t) = (\gamma_x(t), \gamma_y(t)) = (t, \gamma_y(t))$$

with $\gamma_{\nu}(0) = 0$ for some $\epsilon > 0$. Clearly

$$\left. \frac{d\gamma_{\nu}}{dt} \right|_{t=0} = 0$$

and so ϵ may be chosen small enough to insure

$$\left| \frac{d\gamma_{\nu}}{dt} \right|_{t} < 1$$
 for $-\epsilon < t < \epsilon$.

Since $p \notin \partial V - N$ and $\partial V - N$ is compact we can find a δ , $0 < \delta < \epsilon$, such that $Q = \{(x, y) \mid |x| < \delta, |y| < \delta\}$ does not intersect $\partial V - N$. Clearly, from the way ∂V is given in N we can say that $O \cap \partial V$ $= \{(x, \gamma_{\nu}(x)) \mid |x| < \delta\}. \text{ The sets } A = \{(x, y) \mid |x| < \delta, |y| < \delta, y > \gamma_{\nu}(x)\}$ and $B = \{(x, y) \mid |x| < \delta, |y| < \delta, y < \gamma_y(x) \}$ are easily seen to be connected and they obviously do not intersect ∂V . Consequently each is entirely in either V or $\mathbb{R}^2 - V$. Since $p = (0, 0) \in \partial V$ we must have either $A \subset V$ and $B \subset \mathbb{R}^2 - V$ or $A \subset \mathbb{R}^2 - V$ and $B \subset V$. By reversing the y-axis if necessary we may assume $A \subset V$ and $B \subset \mathbb{R}^2 - V$. Now assume p is not an inflection point of ∂V . Then by definition we have a δ_1 , $0 < \delta_1 < \delta$ such that either $\gamma_{\nu}(x) > 0$ for $0 < |x| < \delta_1$, or $\gamma_{\nu}(x) < 0$ for $0 < |x| < \delta_1$. Since the x-axis from p = (0, 0) to q is in V and $B \subset \mathbb{R}^2 - V$ we must have the second possibility. Pick an x such that $-\delta_1 < x < 0$. Since $q \in H$ we must have $[(x, \gamma_u(x)), q] \subset V$. But the intersection of $[(x, \gamma_{\mu}(x)), q]$ and the negative y-axis is obviously a point of B. This is a contradiction and so we must admit that p is an inflection point of ∂V . This establishes the first conclusion of the theorem.

In the case where the number M of inflection points of ∂V is finite and $\partial H \cap \partial V = \emptyset$ we know that ∂H is the boundary of the convex set H and is contained in M lines. It is not difficult to show that this implies that ∂H is a convex polygon. We leave the details to the reader. Q.E.D.

Continue to assume that V is a starshaped subset of the plane with ∂V a continuously differentiable closed curve. Locally the curve ∂V has an interior side and exterior side and so does each tangent line. Thus for each $p \in \partial V$ we may define H_p to be the close half-plane determined by T_p and on the interior side of T_p .

THEOREM 2. If int $H \neq \emptyset$ then $H = \tilde{H} \equiv \bigcap H_p \cap V$, p an inflection point.

PROOF. First suppose p is an inflection point of ∂V and $q \notin H_p$. Then as in the second to last paragraph of the proof of Theorem 1, we may

justify the picture of the situation given in Figure 1, and the conclusion that $[p, q] \subset V$. It follows that $H \subset H_p$ and $H \subset \tilde{H}$.

FIGURE 1

Now let $q_0 \in \text{int } H \subset \text{int } \tilde{H}$. Let q be an arbitrary point of \tilde{H} . Suppose $q \notin H$.

Then since $q_0 \in \operatorname{int} H$ and $q \in V$ we can conclude that $[q_0, q) \subset \operatorname{int} V$. Since $q \notin H$ and H is closed, there must be a point $r \in (q_0, q) \cap \partial H$. It follows from $[q_0, q) \subset \operatorname{int} V$ and Theorem 1 that $r \in T_p$ for some inflection point p of ∂V . If $T_p \neq l(q_0, q)$ then either $q_0 \notin H_p$ or $q \notin H_p$. Both possibilities are absurd. But if $T_p = l(q_0, q)$ then q_0 would be the limit of a sequence of points in $R^2 - H_p \subset R^2 - \widetilde{H} \subset R^2 - H$ which would contradict $q_0 \in \operatorname{int} H$. We have reached a contradiction in all

FIGURE 2

cases and hence $q \in H$ is untenable. Therefore $\tilde{H} \subset H$ and hence $H = \tilde{H}$ as we wished to prove. Q.E.D.

It is not true that $H = \tilde{H}$ without any assumptions. For example, Figure 2 shows a set V (not starshaped) for which $H = \emptyset$ and $\tilde{H} \neq \emptyset$. Hence \tilde{H} cannot be used to tell whether V is starshaped or not. But in order to obtain the funny behavior in this example it *seems* necessary that V not be starshaped. This leads to the following conjecture.

Conjecture. If $V \subset \mathbb{R}^2$ is starshaped and ∂V is a continuously differentiable closed curve then $H = \tilde{H}$.

OPEN QUESTION. Must \tilde{H} always be convex?

BIBLIOGRAPHY

1. Frederick Valentine, Convex sets, McGraw-Hill, New York, 1964.

UNIVERSITY OF CALIFORNIA, BERKELEY