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A point p of a subset V of Euclidean two-dimensional space

R2 is a star-center for V provided the line segment [p, q]

= {tp + (l-t)q\0^t^l}EV ior each g£ V. The set V is star shaped

if it possesses at least one star-center and the set H of all star-

centers of V is called the kernel of V. It is an elementary fact that H

must be convex. Also it is easy to show that if V is closed then H is

closed. We will say that a point y(to) on a curve y: (a, b)—*R2,

a<to<b, is an inflection point provided there is no 8>0 such that

7(^o — 5, t0+8)— {y(to)} is completely contained in one of the two

open half-planes determined by the tangent line of 7 at y(to)-

The author wishes to thank F. Valentine and A. Heppes for their

suggestions on how to shorten the original proof of Theorem 1.

Theorem 1. If V is a closed star shaped subset of the plane such that

the boundary dV of Visa continuously differentiable simple closed curve,

then dH is contained in the union ofdV and the tangent lines to inflection

points on d V. If it is also assumed that dV is a closed curve with a finite

number M of inflection points and dHC\dV = 0, then dH is a polygon

with at most M sides.

Proof. First we will show that closure (int V)=V where int V

denotes the interior of V. (The referee has pointed out that if we

assume that V is compact, then the Jordan Schoenflies Theorem

implies closure (int V) = V.) Since d Vis a simple closed curve X—dV

consists of two open connected components, one bounded, inside d V,

and one unbounded, outside dV. An easy connectedness argument

shows that if FD inside dV7£0 then inside dVEV and similarly if

VO outside dV^0 then outside dVEV. Since V is closed, dVEV

and hence the only possibilities for V are: dV, dVO inside dV, dV\J

outside dV, R2. V = R2 is eliminated because then 6V=0. dV and

dV\J outside dV are eliminated because each is not star-shaped. To

see this just prolong a line from a proposed starcenter through a point

of inside d V until it hits d V as it must since inside d V is bounded.

Thus V = dV\) inside dV and hence closure (int V) = V as we wished

to show.
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Suppose qEdH—dV. We will show that qETP for some pEdV

where Tp denotes the tangent line of dV drawn through p. Since

qEdH there is a sequence q„ER2 — H such that q„—»g. Because

qEdH—dV we have g£int V, and so gn£int V for ra sufficiently

large. Consequently we may assume <?re£int F for all ra. Next we will

show that for each w there is a point r„£int V such that [g„, r„](J". V.

To see this assume the contrary. Then int F£{r| [qn, r]EV} and

since the latter set is clearly closed we must have F = closure (int V)

C {r\ [qn, r]E V}. But this contradicts <?„£.£/"and so such an rn must

exist. Clearly, rn^qn. Now note that the point q cannot be on l(rn, qn)

= the line through rn and qn because qEl(fn, qn) would imply [rn, qn]

^[<Z. ''nj^'t?. qn]EV, a contradiction. Thus rn, qn and q are not co-

linear. Now we will swing a line segment about the point qn until it

hits dV. To do this analytically we let t be the greatest number such

that [qn, srn+(l—s)q]EV ior all s, O^s^t. Since Fis closed, t must

exist. Next we will show that t>0. From g„£int V and qEH it fol-

lows easily that [qn, q)= {(l-t)qn+tq\ 0^t<l} £int V. Similarly

[rn, g)£int F. Also noting that g£int V we can conclude [qn, q]

V[q, r„]£int F. It follows that OO. Now set sn = trn+(l-t)q. Then

qn, sn and q are not colinear. Consider the triangle A = convex hull

{q„, q, sn}. Clearly A£F and int A^0. It is also clear that there

must be a point pnEdVr\(qn, sn) where

(qn, Sn)   =   {tqn +  (1   ~  t)Sn | 0  <  /  <   1 } .

Next l(qn, sH) must be tangent to d V at p„ for otherwise a portion of

dV would extend into int A£ F and would drag along with it some

points of R2— V. Thus qnETPn. Since dV is a closed curve it is com-

pact and thus a subsequence of {pn}, which we may take to be {pn}

itself, will converge to a point p£3F. We will show that the line

determined by p and q is tangent to d V at p. Denote the angle made

by a line / with the x-axis by AI. Now because dV is continuously

differentiable we have Al(p, q)—limn Al(pn, qn) = lim„ ATPn = ATp

where we have used the fact that g^p(g£int V, pEdV) in the first

equality. It follows that l(p, q) = Tp and thus qETp as we wished to

show.

Next we will show that p is an inflection point of dV. We may

assume without loss of generality that the origin is at p and the posi-

tive x-axis equals the ray from p through q. An open neighborhood

N of p in d V can clearly be parameterized by a map y: ( — e, e)—>/?2

such that

7(0 = (7,(0, 7,(0) = (*, 7,(0)
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with 7„(0) =0 for some €> 0. Clearly

tH       =o
dt   (=o

and so t may be chosen small enough to insure

dy*
-     < 1        for -t < I < t.
dt   t

Since p£dF—N and dV — N is compact we can find a 5, 0<5<«,

such that Q={(x, y)\\x\ <§, \y\ <S} does not intersect dV—N.

Clearly, from the way dV is given in N we can say that QC\dV

= {(x,yy(x)) | |x| <§}. The sets A = {(x, y) | |x| <5, \y\ <5,y>yy(x)}

and B = {(x, y) \ |x| <S, \y\ <5, y<7j,(x)} are easily seen to be con-

nected and they obviously do not intersect d V. Consequently each is

entirely in either V or R2—V. Since p = (0, 0)£dF we must have

either A £ V and B ER2 - V or A ER2 - V and B £ V. By reversing

the y-axis if necessary we may assume AEV and BER2—V. Now

assume p is not an inflection point of d V. Then by definition we have

a Si, 0<5i<5 such that either 7„(x)>0 for 0< |x| <Si, or 7„(x) <0

for 0<|x| <5i. Since the x-axis from p = (0, 0) to q is in V and

BER2— V we must have the second possibility. Pick an x such that

— 5i<x<0. Since qEH we must have [(x, 7„(x)), q]EV. But the

intersection of [(x, 7„(x)), q] and the negative y-axis is obviously a

point of B. This is a contradiction and so we must admit that p is an

inflection point of dV. This establishes the first conclusion of the

theorem.

In the case where the number AI of inflection points of d V is finite

and dHC\dV = 0 we know that dH is the boundary of the convex

set H and is contained in M lines. It is not difficult to show that this

implies that dH is a convex polygon. We leave the details to the

reader.    Q.E.D.

Continue to assume that Fis a starshaped subset of the plane with

d V a continuously differentiable closed curve. Locally the curve d V

has an interior side and exterior side and so does each tangent line.

Thus for each p£dF we may define Hv to be the close half-plane

determined by TP and on the interior side of Tp.

Theorem 2. If int Hj£0 then H=H = V\Hpr\V, p an inflection
point.

Proof. First suppose p is an inflection point of d V and q(£Hp. Then

as in the second to last paragraph of the proof of Theorem 1, we may
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justify the picture of the situation given in Figure 1, and the conclu-

sion that [p, q]<tV. It follows that HEHP and HEH.

r2-v ^^-1

bv/<■:■; .'•'"       v

/■;■■ ii,

Figure 1

Now let qo&nt HE'mt H. Let q be an arbitrary point of H. Sup-

pose q(£H.

Then since qoE'mt Hand qE V we can conclude that [q0, q) £int V.

Since g£i? and H is closed, there must be a point r£(g0, q)(~\dH. It

follows from [q0, g)£int F and Theorem 1 that rETp for some in-

flection point p oi dV. If Tp^l(q0, q) then either qoEHp or Q&Hp-

Both possibilities are absurd. But if Tv = l(q0, q) then q0 would be the

limit of a sequence of points in R2-HPER2-HER2 — H which

would contradict go£int H. We have reached a contradiction in all

I   P2 s I T

Figure 2
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cases and hence qEH 1S untenable. Therefore HEH and hence

H= H as we wished to prove.    Q.E.D.

It is not true that H=H without any assumptions. For example,

Figure 2 shows a set V (not starshaped) for which H= 0 and H^0.

Hence H cannot be used to tell whether V is starshaped or not. But

in order to obtain the funny behavior in this example it seems neces-

sary that V not be starshaped. This leads to the following conjecture.

Conjecture. If VER2 is starshaped and 97 is a continuously

differentiable closed curve then H=H.

Open Question. Must II always be convex?
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