THE KERNEL OF A STARSHAPED SUBSET OF
THE PLANE

BENJAMIN HALPERN

A point p of a subset V of Euclidean two-dimensional space
R? is a star-center for V provided the line segment [p, ¢]
={tp+(1—1£)g| 0=t =<1} CV for each g€ V. The set V is starshaped
if it possesses at least one star-center and the set H of all star-
centers of Vis called the kernel of V. It is an elementary fact that H
must be convex. Also it is easy to show that if V is closed then H is
closed. We will say that a point (%) on a curve «v: (g, b)—R?,
a<tp<b, is an inflection point provided there is no >0 such that
y(to—30, to+06)— {7(t0)} is completely contained in one of the two
open half-planes determined by the tangent line of v at y(t).

The author wishes to thank F. Valentine and A. Heppes for their
suggestions on how to shorten the original proof of Theorem 1.

THEOREM 1. If V is a closed starshaped subset of the plane such that
the boundary AV of V is a continuously differentiable simple closed curve,
then OH is contained in the union of 0V and the tangent lines to inflection
points on dV. If it is also assumed that OV is a closed curve with a finite
number M of inflection points and OHNOV = &, then dH is a polygon
with at most M sides.

Proor. First we will show that closure (int V)=V where int V
denotes the interior of V. (The referee has pointed out that if we
assume that V is compact, then the Jordan Schoenflies Theorem
implies closure (int V)= V.) Since dV is a simple closed curve X —0V
consists of two open connected components, one bounded, inside d V,
and one unbounded, outside 8 V. An easy connectedness argument
shows that if V1 inside d V> & then inside d VC V and similarly if
VN outside dV# & then outside dVC V. Since V is closed, dVCV
and hence the only possibilities for V are: dV, dVU inside dV, d VU
outside 4V, R% V=R?is eliminated because then dV=g. dV and
dVU outside 0V are eliminated because each is not star-shaped. To
see this just prolong a line from a proposed starcenter through a point
of inside @V until it hits 9V as it must since inside 9V is bounded.
Thus V=0VU inside 8V and hence closure (int V)=V as we wished
to show.
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Suppose ¢&I0H —A3V. We will show that ¢& T, for some pEdV
where T, denotes the tangent line of 8V drawn through p. Since
gEOH there is a sequence ¢,&ER2?—H such that ¢,—¢. Because
gE0H -0V we have ¢E€int V, and so ¢g.&€int V for » sufficiently
large. Consequently we may assume ¢,&int V for all #n. Next we will
show that for each # there is a point 7,E&int V such that [g., 7. | V.
To see this assume the contrary. Then int VC{r|[ga, r]CV} and
since the latter set is clearly closed we must have V =closure (int V)
C {7| [gs» r]C V}. But this contradicts ¢, H and so such an 7, must
exist. Clearly, 7,£¢,. Now note that the point ¢ cannot be on (7, ¢.)
=the line through 7, and ¢, because ¢E(r,, ¢.) would imply [7,, ¢.]
Ulg, 7.]\Yg, ¢.]CV, a contradiction. Thus 7., ¢, and ¢ are not co-
linear. Now we will swing a line segment about the point ¢, until it
hits V. To do this analytically we let ¢ be the greatest number such
that [ga, s7.+(1—s)g]C V for all s, 0 <s <t. Since V is closed, ¢ must
exist. Next we will show that ¢:>0. From ¢,&Eint V and ¢€H it fol-
lows easily that [¢., @)= {(1—t)q,,+tq|0§t<1}Cint V. Similarly
[7., ¢ Cint V. Also noting that ¢€int V we can conclude [g., ¢]
Ulg, r.]Cint V. It follows that ¢>0. Now set s, =¢r,+ (1 —#)g. Then
gn, S» and ¢ are not colinear. Consider the triangle A =convex hull
{gn ¢, sn}. Clearly ACV and int A% . It is also clear that there
must be a point p,&03 VM (¢a, 5,) where

(gn, ) = {tgu + (1 — 5| 0 < £ < 1}.

Next /(gn, s») must be tangent to dV at p, for otherwise a portion of
0V would extend into int ACV and would drag along with it some
points of R2— V. Thus ¢, & T,,. Since dV is a closed curve it is com-
pact and thus a subsequence of { Dn }, which we may take to be {p,,}
itself, will converge to a point pEAJV. We will show that the line
determined by p and ¢ is tangent to dV at p. Denote the angle made
by a line ! with the x-axis by 4. Now because dV is continuously
differentiable we have Al(p, ¢) =lim, Al(pa, ga) =lim, AT, =AT,
where we have used the fact that ¢g=p(g€int V, pEaJV) in the first
equality. It follows that I(p, ¢) =T, and thus g€ T, as we wished to
show.

Next we will show that p is an inflection point of dV. We may
assume without loss of generality that the origin is at p and the posi-
tive x-axis equals the ray from p through ¢. An open neighborhood
N of p in 9V can clearly be parameterized by a map v: (—¢, € —R?
such that

& = (v=(9), 1)) = & ()



694 BENJAMIN HALPERN |December

with v,(0) =0 for some ¢>0. Clearly

Gl
dt

t=0

and so e may be chosen small enough to insure

Ll
dt

<1 for —e<t<e

12

Since pdV —N and 9V — N is compact we can find a §, 0<d<e,
such that Q= {(x, y)Hx[ <34, Iyl <3} does not intersect 8V —N.
Clearly, from the way 9V is given in N we can say that QMdV
= {(x,'y,,(x)) I le <6}.ThesetsA = {(x, ) I |x| <6,|y] <6,y>’y,,(x)}
and B={(x, )| |*| <8, | y| <8, ¥<7v,(x)} are easily seen to be con-
nected and they obviously do not intersect d V. Consequently each is
entirely in either ¥V or R?— V. Since p=(0, 0)&S9dV we must have
either ACV and BCR?—V or ACR?*—V and BCV. By reversing
the y-axis if necessary we may assume A CV and BCR2—V. Now
assume p is not an inflection point of V. Then by definition we have
a 0;, 0<9; <8 such that either v,(x) >0 for 0<|x| <0y, or v,(x) <0
for 0<|x| < 6;. Since the x-axis from p=(0, 0) to ¢ is in V and
BCR?*—V we must have the second possibility. Pick an x such that
—8;<x<0. Since g€ H we must have [(x, 7,(x)), ¢]C V. But the
intersection of [(x, v,(x)), ¢] and the negative y-axis is obviously a
point of B. This is a contradiction and so we must admit that p is an
inflection point of dV. This establishes the first conclusion of the
theorem.

In the case where the number M of inflection points of 8V is finite
and 0HNAV = we know that dH is the boundary of the convex
set H and is contained in M lines. It is not difficult to show that this
implies that dH is a convex polygon. We leave the details to the
reader. Q.E.D.

Continue to assume that V is a starshaped subset of the plane with
0V a continuously differentiable closed curve. Locally the curve 4V
has an interior side and exterior side and so does each tangent line.
Thus for each pEAV we may define H, to be the close half-plane
determined by T, and on the interior side of T,.

THEOREM 2. If int H# & then H=H=NH,NV, p an inflection
point.

Proor. First suppose  is an inflection point of d V and ¢& H,. Then
as in the second to last paragraph of the proof of Theorem 1, we may
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justify the picture of the situation given in Figure 1, and the conclu-
sion that [p, ¢] V. It follows that HC H, and HCAH.

R -V

u,
FiGURE 1

Now let ¢o€int HCint H. Let ¢ be an arbitrary point of H. Sup-
pose g H.

Then since ¢o€int H and ¢& V we can conclude that [go, g) Cint V.
Since ¢éE H and H is closed, there must be a point r& (g0, ¢)MNIH. It
follows from [qo, ¢) Cint V and Theorem 1 that r& T, for some in-
flection point p of V. If T,5I(qe, q) then either qo H, or ¢ H,.
Both possibilities are absurd. But if T, =1(qy, ¢) then ¢, would be the
limit of a sequence of points in R2—H,CR*—HCR?*—H which
would contradict ¢oEint H. We have reached a contradiction in all

|1

FIGURE 2
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cases and hence g H is untenable. Therefore #CH and hence
H=H as we wished to prove. Q.E.D.

It is not true that H= H without any assumptions. For example,
Figure 2 shows a set V (not starshaped) for which H= & and H# &.
Hence H cannot be used to tell whether V is starshaped or not. But
in order to obtain the funny behavior in this example it seems neces-
sary that V not be starshaped. This leads to the following conjecture.

ConNjECcTURE. If VCR? is starshaped and 4V is a continuously
differentiable closed curve then H = f.

OPEN QUESTION. Must H always be convex?
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