
ON STJBPARACOMPACT SPACES1

DENNIS K. BURKE

1. Introduction. This paper is concerned with establishing equiva-

lence between several classes of topological spaces. The main result

is Theorem 1.2, for which a proof is given in §2. Throughout this

paper the set of positive integers will be denoted by Z+.

In [2] Arhangel'skii introduces the class of (r-paracompact spaces.

Following Arhangel'skii, a space X is called a-paracompact if for any

open covering 11 of X there is a sequence {ll,,}",! of open coverings

of X such that if x£A there is w(x)£Z+ and some set P£ll with

St(x, TWOGP.
The class of <r-paracompact spaces was studied recently by Coban

in [5], and the author and R. Stoltenberg in [4]. The following propo-

sition was proved independently in both papers.

Proposition 1.1. If X is a topological space with the property that

every open cover of X has a 0-discrete closed refinement, then X is

a-paracompact.

Spaces with the property that every open cover has a tr-discrete

closed refinement are called F,-screenable by McAuley in [9].

We now state a much stronger result than Proposition 1.1, which

says that cr-paracompactness is actually equivalent to several condi-

tions on a topological space and, in particular, to the F„-screenable

condition.

Theorem 1.2. For a topological space X the following conditions are

equivalent:

(a) X is a-paracompacl.

(b) Every open cover of X has a a-discrete closed refinement.

(c) Every open cover of X has a a-locally-finite closed refinement.

(d) Every open cover of X has a a-closure-preserving closed refinement.

In view of the above theorem and because it appears that the terms

<r-paracompact and F„-screenable are not very satisfactory, we make

the following definition:

Definition 1.3. A topological space X is called subparacompact if

it satisfies any one of the conditions (a) through (d) stated in Theo-

rem 1.2.
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Clearly the class of subparacompact spaces includes the class of

developable2 spaces. In fact it is known that semimetric spaces [9]

and semistratifiable spaces [6] satisfy (b) and hence are subpara-

compact.

A type of topological space which naturally possesses property (c)

is a space with a tr-locally-finite closed network.3 Spaces with a

(r-locally-finite network are called ff-spaces by Okuyama in [12] and

[13]. Assuming regularity, Siwiec and Nagata have shown in [14] that

the class of <r-spaces is equivalent to the class of spaces with a a-dis-

crete network and to the class of spaces with a a-closure-preserving

network.

Remark 1.4. If X is a regular space we need not require that the

refinements as given in (b), (c), or (d) of Theorem 1.2 consist of closed

sets.

2. Proof of Theorem 1.2. It suffices to prove (a)—>(b) and (d)—»(b),

since it has been established by Proposition 1.1 that (b)—>(a) and it

is obvious that (b)—>(c)—»(d).

(a)—>(b). Assume X satisfies condition (a) of Theorem 1.2.

Lemma 2.1. If It is any open cover of X there is a sequence {11,, }„~x

of open covers of X satisfying:

(1) 111 = 11 and H„+i refines 1l„/or each nEZ+.

(2) Given nEZ+, x£X there is an integer mEZ+ (m depends on ra

and x) and some UnE^-n such that St(x, 1im)C Un-

Proof. By induction, for each kEZ+, we can find a sequence

[lln(&)}n-t of open covers of X such that:

(i) 1li(l) = 1land1U+i(fc + l)=1l*+i(£).

(ii) 11„+i(fc) refines 1Ln(k) for each n^k.

(iii)  11„(&-|-1) refines 1l„(&) for each n^k + l.

(iv) Given x£X there is an integer w£Z+ (m depends on k and x)

such that St(x, c\lm(k))EUk for some 14£1U(&).

Let lit = lit(k); it follows that {1L*} T= 1 is a sequence of open covers

with the desired properties.

Let 11= { Ua: «£r| be an open cover of X with T well-ordered.

Then there is a sequence {lln}^ of open covers of X satisfying (1)

and (2) of Lemma 2.1.

For each x£X let

2 A sequence {lU)^, of open covers of a space X is called a development for X ii

the collection {Stfc.lL,): nG.Z+} is a neighborhood base at x for each x(EX.

3 A collection 03 of subsets of X is called a network for X if for any open set OCX

andxGO there is an element BE® such that x&BQO.
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Tx = {a E r: St(x, U,) C Ua for some » £ Z+},

and define a(x) to be the least element of Fz.

For a£r and «£Z+ let

Pn(a) = {z E X: St(z, 11„) E Ua and a = a(z)\.

Note that {Pn(a): aEF} is a disjoint collection for each w£Z+, and

the collection |P„(a):a£r, w£Z+} covers A and refines 11.

Now if n, mEZ+, with m^w.we define

Pn.m(a) = {z E Pn(a): St(z, U») C Pn for some Un E U,}.

It follows that LC-nPn,m(a) =Pn(ot), so the collection

fP = {Pn,m(«): n, m £ Z+, w =■ w, a £ r}

coversX and refines 11. We will show that for a fixed n, mEZ+, m^n,

the family (?„,«,= {Pn,m(«): a£r} is a discrete collection of sets in X.

Let Pn,m(tt) be a nonempty element of (P„,m and z an arbitrary

element of Pn,m(a). Suppose there is some PEF, fi^a, such that

St(z, citm)r\Pn,m(B)^0. Let y£St(z, <Um)rYPn,m(j3). Now y£Pn,ro(|3)

implies that St(y, 1lm) £ Un for some Pn£1t„ and y £St(z, 1lm) implies

that z£St(y, 1lm)£Pn. Thus St(y, 1lm)£St(z, <U„)£P«, so a£IV

Hence @<a since fi=a(y) and a(y) is the least element of Fv. Also

z£Pn,m(«) implies that St(z, 1lm)CP„' for some UI £ll„. But

y£St(z, 1lm)£P„' implies that St(z, 1lm)£St(y, 1ln)£Pp, so |8£r*.

Hence a(z) =a<fi and we have a contradiction.

Since z was an arbitrary element of Pn,m(a) we have shown that

St(P„,m(«), cUm)r\Pn,m(B)=0 whenever fi^a.

To complete the proof that (Pn,m is discrete we show for each x£A

that there is a neighborhood of x which intersects at most one element

of (Pn.m- LetP„,m = U {P„,m(a):a£r}. If x£A —P„,m we are through,

so suppose x£Pn,m. Now

Pn,m£A-U {P£llro: Ur\Pn,m = 0}

C U {St(P„,m(a), 1U): a£ t} = St(P„,m, 11m)

and A-U{P£1U: UC\Pn<m = 0} is a closed set. Thus P„,m

£St(P„,m, 1lm). So x£St(Pn,m, 11m) and there must be some fiEF

such that x£St(P„,ra(j3), 1lm). We have shown above that

$>t(Pn,m(B), iu) does not intersect any Pn,m(ot) for a^fi. Hence

St(Pn,m(P), Hm) is a neighborhood of x which intersects only one

element of 6>n,m. It follows that (P = LC=i U^=„ 8>„,m is a tr-discrete

refinement of 11.

To complete the proof that (a)—»(b) note that if P„,m(a)£a>„,„,
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then Cl(Pn,m(a))£Pn,m£U{St(P„,„,(/3), 1lm):^£r} and Cl(Pn,m(a))

r\St(Pn.m(B), 1lm) = 0 iorB^a. Thus Cl(P„,ro(a))£St(Pn.m(a), 1ln)

£St(P„,m(a), 1lre)C^a. We have shown that

(?' = {Cl(P„,m(a)):PB,ro(a)£(P}

is a closed refinement of 11. Since (P is <r-discrete, <P' is a <r-discrete

closed refinement.

(d)—>(b). Assume every open cover of X has a cr-closure-preserving

closed refinement.

Lemma 2.2. For each nEZ+, let 1l(ra) = { Ua(n):aET} be an open

cover of X such that Ua(n + l)EUa(n) for all a£T. Then there is a

sequence {(?(n)} "=l of closed coverings of X such that, for each nEZ+,

0>(ra) =U^=i (Pm(n) and the following conditions are satisfied:

(1) (?m(n) = {Pa,m(ra):a£r} and is closure-preserving for each

mEZ+.
(2) Pa.m(n)EUa(n)for each aET, mEZ+.

(3) Pa.m(n)EPa.m+i(n) for each aE^, mEZ+.

(4) Pa,m(n+l)EPa.m(n) for each aET, mEZ+.

Proof. Each 1l(ra) has a closed refinement ffi(ra) =Um=1 (&m(n)

where each (&m(ra) is closure-preserving and (BOT(ra)£(Bm+i(ra). Let

m, nEZ+ and a£r. If m<n let Pa,m(n) = 0- If m^n define

Pa.m(n) = U {B E &m(k): B C Ua(n), k E Z+, n ^ k ^ m}.

Let (Pm(ra)= |Pa,m(w):a£r} and C?(w) =U£_i 6>m(ra). It is easily

verified that {(?(n)} ™=1 is the required sequence of closed covers.

Let 11= {<7a:o;£r} be an open cover of X with V well ordered.

We will construct a cr-discrete closed refinement of II. For notational

purposes let £/„(l, ra) = Ua and 11(1, ra) = { Ua(l, ra):a£r} for each

ra£Z+. There is a sequence {<?(1, ra)}„^i of closed covers of X such

that (P(l, ra) =Uot-i 0^m(l, ra) and conditions (1) through (4) of Lemma

2.2 are satisfied, with the obvious notational changes. It follows by

induction that, for each kEZ+, we can find a sequence {ll(k, ra)} *„!

of open covers and a sequence {<P(k, ra)} "_i of closed covers of X such

that 1l(&, n)={Ua(k, ra):a£r}, 0>(k, n)=\J£,i<?m(k, ra), and the

following is true for each m, nEZ+:

(1) <Pm(k, ra) = {Pa,m(k, n): a£T} is a closure-preserving collection.

(2) Pa.m(k, n)EUa(k, ra),

(3) Pa,m(k, n)EPa,m+i(k, ra),

(4) Pa.m(k, n + l)EPa.m(k, ra),

(5) Ua(k+l,   n)=Ua-Ul><aPt>,n(k,    1).

Notice that for x£X, if a(x) is the first element of T such that
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xEUaw, then x£Pa(I)(fe, n) for any k, nEZ+. Hence 1l(&, n) is

indeed an open cover of X.

For k, m, nEZ+ and or£r define

La(k, m, n)   =   Pa,n(k,  1) C\ Pa.m(k +   1, »).

Then £(k, m, n) = {La(k, m, n): a£r} is a closure-preserving collec-

tion of closed sets. Let y, aEF with y^a; say y<a. Then

La(k, tn, n) E Pa.m(k + 1, n) £ Ua(k + 1, n)

=   Ua -     U    Pfl..(ft,  1) £ Ua - Py.n(k,  1) £  Ua - Ly(k, M, f»).

Hence Ly(k, m, n)r\La(k, m, n) = 0 when y^a. Thus £(k, m, n) is

a discrete collection of closed sets for each k, m, w£Z+. Clearly

La(k, m, n)EUa, so we are through if we show £ = U£_i Id U„°,i

£(k, m, n) covers X.

Let x£A. Since F is well ordered, there is afiEF, and k, m, nEZ+,

such that xEPp,n(k, m) but x£Pa,„'(&', m') if a</3 and &', m',

w'£Z+. We show that xEL$(k, m, n). First notice that, if a>@,

Pa.m(k + 1, n)EUa(k + l, n)EUa-Pf>,n(k, 1) and so Pf,,n(k, 1)
r\PaAk + l,n)=0.Th\is

X E Pf>,n(k, m) -   U   Pa.m(k + 1, n)

£ Pfi,n(k,  1) -    U    Pa.m(k + 1, «)

= P^,„(^, 1) -   U   P„,m(* + 1, n)

E P».n(k, 1) r\ P0,m(k +l,n) = L&k, m, n),

and that completes the proof.

3. Properties of subparacompact spaces. This section is devoted

to showing a few properties of subparacompact spaces. Most of the

results follow in a straightforward manner by the use of Theorem 1.2.

Theorems 3.1 and 3.2 answer questions asked by Arhangel'skii in [2].

Theorem 3.1. If f: X—>F is a closed map from a subparacompact

space X onto Y then Y is subparacompact.

Proof. If 11 is any open cover of F, /_1(^) = {f~l(U): P£ll} is

an open cover of X. Since X is subparacompact/_1(ll) has a closed

refinement (P = U^Li (P„ where 0~\, is a closure-preserving collection of

closed sets for each w£Z+. Since / is a closed map it follows that

/((Pn) = {/(P): P£o\} is a closure-preserving collection of closed sets
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in Y. Thus f(<?) is a a-closure-preserving refinement of 11 and Y is

subparacompact.

Theorem 3.2. If f: X—>Y is a perfect map from a regular space X

onto a subparacompact space Y then X is subparacompact.

Proof. Suppose 11 is any open cover of X. For each y£ Y we can

find a finite subcollection 1l(y)£cU such that f_1(y)EU(y) =

U { U: £/£1l(y)}. Let G(y) = Y-f(X- U(y)); then 9= {G(y):yE Y}
is an open cover of Y. Consequently 9 has a <r-discrete refinement

<P = U"=iO">n where each (Pn is a discrete collection. It follows that

/-l(r?) = {/"'(P): PES'} is a <r-discrete refinement of { U(y) :yEY}.

Given P £(P let y(P) be a fixed element of Fsuch that/-1(P)£/7(y(P)).

For ra£Z+ let (B„= {tl(P)C\U: PE&n, £/£1l(y(P))}. Sincetl(<S>n)

is a discrete collection in X each x£X has a neighborhood A/* which

intersects at most one element of f~l((Pn). Since each element of

/"'(^n) intersects only finitely many elements of (B„ and each element

of 03„ is contained in some element of ff"„ it follows that Nx will inter-

sect only finitely many elements of (Bn. So ffi„ is locally-finite and

(B = U"_i (&n is a er-locally-finite refinement of 11. Since X is regular it

follows that every open cover of X has a <r-locally-finite closed refine-

ment. Hence X is subparacompact.

A completely regular space X is called a p-space [l ] if in the Stone-

Cech compactification B(X) there is a sequence {7„} "_iof open covers

of X such that n",]St(x, yn)EX for each x£X. The sequence

J7n} "-i is called a pluming for X in B(X). X is a strict p-space if there

is a pluming (ya}"_1with the additional property: fl^., Cl(St(x, yn))

= Pi™_x St(x, 7„) for each x£X.

By Theorem 3.2 a regular space which is the perfect preimage of a

developable space is subparacompact; if this preimage is completely

regular it can be shown to be a p-space. Since Arhangel'skii [2] an-

nounced that any r/-paracompact p-space can be mapped perfectly

onto a developable space, we have the following corollary to Theo-

rem 3.2.

Corollary 3.3. A completely regular space X can be mapped onto a

developable space by a perfect map if and only if X is a subparacompact

p-space.

In [2] Arhangel'skii asks whether every strict p-space can be

mapped perfectly onto a developable space. To answer this question

negatively it suffices to find an example of a strict p-space which is

not subparacompact. Such an example will be given in the last section

of this paper.
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Theorem 3.4. A collectionwise normal subparacompact space is

paracompact.

Theorem 3.4 is a restatement of a result by McAuley [9] that a

collectionwise normal P„-screenable space is paracompact.

Since <r-discrete families in a countably compact space must be

countable the following is obvious:

Theorem 3.5. A countably compact, subparacompact space X is

compact.

Theorem 3.6. A subparacompact locally-developable space X is

developable.

Proof. Suppose each point x£A has an open neighborhood Nx

with a development {$n(x) }„=x- Let (P = U£.i (Pn be acr-discrete closed

refinement of {Nx: x£X} where each (P„ is a discrete collection.

Now fix an arbitrary positive integer n. Given P£(Pn let x(P) he

a fixed element of X such that P£NxtP) and let

U(P) = X - U {P' E <P«: P' ^ P}-

For w£Z+ let

Hn.m(P) = { P(P) H G: GE Qm(x(P))}.

Finally we define

Hn.™  =   {U:    UE   Hn,n.(P),  P E  <P»}   U   { ft,}

where Qn=X — U{P:P£(?n}. Then 1l„,m is an open cover of X for

each n, mEZ+ and we show that {Hn,*.: n, mEZ+} is a development

for A.

If z£A there is an integer w£Z+ with some P£(P„ such that z£P.

Consequently if 0 is any open set containing z there is some w£Z+

such that St(z, Qm(x(P)))EOr\Nxip). By construction z is not con-

tained in any element of 1t„,m(P') for any P'£0\, such that P'p^P.

Thus St(s, 1t„,m)=St(z, Hn,m(P))£St(z, gm(x(P)))£0nAl(/»)£0.

Hence St(z, cU.n,m)£0 and the theorem is proved.

The proof of the following theorem is straightforward and is left

to the reader.

Theorem 3.7. If X is a countable union of closed subparacompact

subspaces then X is subparacompact.

4. Examples.

Example 4.1. A strict p-space which is not subparacompact and

hence cannot be mapped perfectly onto a developable space.
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Let Wi (resp. w2) be the first ordinal of cardinality ^i (resp. R2).

If X is the set of points in the cartesian product of [0, w2) with itself

and a£(0, w2) we define:

Lx,a= {(a,B)EX: BE [0,0,2)} andL2,« = {(B,a)EX: BE [0,w2)}.

For convenience let Lx,o = L2,o= {(0, 0)}.

Define an open base for a topology on X as follows: For each

(<*, |3)£X where a^O and By^O the singleton set {(a, B)} is in the

base. For i= 1, 2 and a£ [0, w2) the base includes all subsets of Li<a

which have a finite complement relative to £,-,„. It is easily verified

that this collection does form an open base for a topology on X.

Notice that with the above described topology X is a T2 lo-

cally compact space. Hence X is open in B(X). That X is a strict

p-space follows from the definition if, for each w£Z+, we let

9 = 7n = {Li,a: a £ [0, o>2),        * = 1, 2}.

Then yn is a cover of X open in B(X) and St(x, yn) is an open compact

set for each x£X.

The following lemma will be needed to show that X is not sub-

paracompact.

Lemma. Suppose A and B are subsets of X with the property: At~\Lx,a

and BC\L2,a are countable for each a£ [0, w2). Then A and B do not

cover X.

Proof. Suppose X = A\JB. Let

/3„ = sup{/3: (a, B) £ A f\ Li,a, a £ [0, on)}.

Then B0<u2 and it follows that [0, wi) X (/So, w2) is a nonempty subset

of Xdisjoint from A. Thus [0,u>x) X(Bo,o>2)EB. LetaoE(Bo,co2). Then

[0, ux) X {a0} EBC\L2,ao which is in contradiction with the original

condition placed on B.

We show that X is not subparacompact by showing that 9 cannot

have a <r-discrete refinement.

Assume (P = U™=i <Pn is a refinement of g where each (Pn is a discrete

collection. Let g'= {LUa: a£ [0, <o2)} and g"= (L2,a: a£ [0, ws)};

then g' and g" are subcollections of g. Let 0V and (P„" be all elements

of (Pn which are contained in elements of g' and g" respectively. Note

that every element of 6>» will be in (?„' or 0\". Let P„' and Pn" be the

union of all the elements in (P„' and (P„" respectively. If a£ [0, w2)

there is a neighborhood of (a, 0) which intersects at most one element

of (Pn'. Hence LXia intersects only finitely many elements of (?„' and

it follows that P"r\Li,a is finite. Similarly PnC\L2,a is finite. Let

A =U„".1Pn" and B = [}„.! Pn . Then A and B satisfy the conditions
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in the lemma and consequently cannot cover A. Thus (P does not

cover A.

Example 4.2. A pointwise paracompact space which is not sub-

paracompact.

It is easily verified that the space of Example 4.1 is pointwise

paracompact.

Example 4.3. A pseudocompact subparacompact space which is

not countably compact.

Let X be the set of points in the unit interval [0, l] with nonzero

points having their usual neighborhoods. Let the neighborhood sys-

tem at zero include the usual neighborhoods minus the points in the

sequence {i/n}"=x-

Example 4.4. A normal, countably paracompact, subparacompact

space which is not paracompact.

Let X be the space of Example H described by Bing in [3]. This

space is perfectly normal and hence countably paracompact [7]. A is

subparacompact since it can be shown to possess a a-discrete net-

work; however it is not paracompact since it is not collectionwise

normal.
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