THE MULTIPLICATIVE GROUP OF ABSOLUTELY
ALGEBRAIC FIELDS IN CHARACTERISTIC p

STEPHEN J. TILLMAN

Let p be a fixed prime number, and k an algebraic extension of
F=Z/pZ. Let F, be the algebraic closure of F. It is well known that

G(F,/F)%Z% II Zq,
all primes g
where Z, is the g-adic integers. Hence G(k/F) is isomorphic to a
factor group of Z, and is essentially described by a supernatural
number,

€Y N= JI ¢@

all primes ¢
where 7(g) is either finite or infinite, and ¢"? is the degree of the
maximal g-extension of Fin k.

We shall show that the multiplicative group of &, k*, is isomorphic

to a subgroup of
0z~ 2. Z(g),

all primes ¢
where Z(g®) is the g-primary part of Q/Z. Thus k* is also described
by a supernatural number,
(2) M= H 9’("),

all primes ¢
where s(g) is either finite or infinite and ¢*@ is the “order” of the
g-Sylow subgroup of &*.

We shall see that the s(g)’s are completely determined by the r(g)’s
defined in (1). In particular we shall easily be able to see when k¥ is
g-divisible for any prime gq.

DEeFINITION. For any group G, we say G has condition T if
Va, bEG, 13 a cyclic subgroup H of G such that a, bEH.

PROPOSITION. Any group with condition T is isomorphic to a sub-
group of either Q or Q/Z.

Proor (THE PROOF OF THIS PROPOSITION IS DUE TO PROFESSOR
MicHAEL I. RosEN). Suppose G is a group with condition T. Then G
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is either a torsion group, or a torsion free group, for if ¢, bEG, such
that a has finite order and b has infinite order, then there exists no
cyclic subgroup containing both ¢ and b, contradicting the assump-
tion that G has condition T. We shall assume that G is a torsion
group, and prove the proposition only in this case. G is an abelian
torsion group, hence it is isomorphic to the direct sum of its primary
parts G,. We will show that G, is either cyclic or isomorphic to Z(g*).
This is sufficient to prove our assertion since Z(g*) is the ¢-primary
component of Q/Z. Obviously if G, is finite it must be cyclic. Suppose
G, is infinite, and let &y, %2, ks, + - - be a sequence of distinct elements
of G,. Let H, be the subgroup generated by 4, - - -, k.. H, is a finite
cyclic group. Consider the chain HyCH,CH;C - - - . This chain
cannot break off. Let H=U;2, H;. [tis easily seen that H is isomorphic
to Z(g®). Since Z(g®) is a divisible group, H is a direct summand of
G,. If it were a proper direct summand, G, would contain a subgroup
isomorphic to Z/gZ®Z/qZ. Thisis impossible since Z/qZ ® Z/qZ does
not have condition T, and condition T is inherited by subgroups.
Thus H=G, and G,=Z(¢*). QED

REMARK. k* has condition T, and is torsion; hence by the above
proposition we can write

A3) = 3 Gy

all primes ¢

where G,ZZ(g*). Note that for any prime g, k* is ¢g-divisible if and
only if G, is isomorphic to either (0) or Z(g*).

ProrosiTION 1. G, = (0).

Proor. Suppose not. Then k* contains a nontrivial element of
order p. This element would satisfy f(x) =x?—1=0 over k[x]; but
since the characteristic at & is p, 1'is the only solution to f(x) =0.

QED

DEFINITION. For any prime g5 p define /(g) as the smallest positive

integer such that p'@=1(g).

PRroPOSITION 2. For any prime q#p, if L(g)} N, then G,=(0).

Proor. If G, # (0), then some finite subfield, E, of £ has a nontrivial
g-Sylow subgroup of its multiplicative group. We shall show that this
is impossible. Let E be any finite subfield of 2. Then for some nEZ,
E* has pn—1 elements, and I(g)|n, for if it did, it would certainly
divide N. Hence #n=ul(q)+v, 0<v<i(g). pr—1=p7(p*"2—-1)
4 (p*—1). But by the definition of I(g), p**9=1(g), and p*#1(g),
hence pr—1=p*—1#£0(g), so gfp»—1, and E* has no nonzero
g-subgroup. QED
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RIEMARK. Notice that F has an /(g)-extension in & if and only if
i(q)| N.

ProPOSITION 3. Let g#p be any prime, and assume F has an I(q)-
extension in k. Then k* is g-divisible if and only if the maximal g-exten-
sion of Fin k is infinite i.e., r(q) = ».

Proor. Suppose the maximal g-extension of Fin k is infinite. Since
we are assuming F has an /(g)-extension in %, 3 a finite subfield E
such that E* has p»—1 elements and #=I(g)m. We have

pr— 1= (p'@ — 1)(p!@ =1 4 pl@m=2) L . .. 4 plo 1),

But by definition p!@=1(g) hence ¢|p"—1, so G,# (0) (defined in
equation (3)). Thus we must show G,=~ Z(¢g*). Since we are assuming
r(g) = =, it suffices to show that g-extensions have strictly increasing
g-Sylow subgroups of their multiplicative groups. We must show
that if

) P@OT — 1 == g,
then a(n) >a(n—1). (Equation (4) defines a(%).)
POT — 1 = (PHOCT — 1) (p@P TN o D@D L. )
= @e@=Df,_(pl@ e oL 1),

so a(n) >oa(n—1) because (p¥@¢ =V 4 . . . 41) has g terms, each
congruent to 1 mod g, hence is divisible by g.

Now suppose the maximal g-extension of F in % is finite. We saw
in the proof of the first part of this proposition that the assumption
l(q)l N implies G, # (0). Hence if 2* were g-divisible, we could find a
finite subfield E of k such that the g-Sylow subgroup of E* has more
than g elements. Suppose E is any such finite subfield. There is
no loss of generality in assuming that E contains an I(g)-extension
and a maximal g-extension of F in k. Thus E* has pl@7@m_1 ele-
ments, where g{m. But

?l(q)qf(c)m —1= (Pl(q)q'('z) — 1)(Pl(q)q'(ﬂ)(m-l) + -4 1)
= qa(r(q));r(q)(pl(q)q'(ﬂ(m—l) + .41,
and since g{m and p}@=1(q), g} (p}@r@m-D{ ... 41); hence the
g-Sylow subgroup of E* has only ¢=(® elements, so we have a con-

tradiction. Thus k* is not ¢-divisible. QED
The following lemma is due to Van der Waerden (see [1, p. 58]).

LEMMA. Let a, r be integers >0 and a an integer > 1. Let q be a prime
number and
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T = (a? —1)/(ad" —1).

If a prime p divides T and a¥ " —1, then q=p. If q divides T, then q
divides a? ' —1. Finally, if ¢>2 or r>1, then T #0(g?).

Proor. We have
T=(a"—1)r1+4g " —1)r2+ ... +gq.

This proves all the statements except when ¢=2, and in that case,
T=(a?"—1)42, so that these assertions are also obvious. QED
DEeFINITION. We define the function 8(g) for all primes ¢#p as
follows:
P'(q) —-1= qﬂ(q)tq’ q '{ gy ¢ # 2y
pz —-1= Zﬂ(z)tz, 123 Odd, q= 2.
PROPOSITION 4. Let g be a prime such that G, is finite and nontrivial.
Then
s(g) = B(g) +1(9) if g # 2,
s(2) =B2)+r(2) -1 ifg=2, p#=2,
where r and s are defined in equations (1) and (2) respectively.

Proor. Recall that the order of G, is ¢*?. We are assuming G, is
finite and nontrivial, so F has an I(g)-extension in &, and its maximal
g-extension in k is finite. We also saw in the proof of Proposition 3
that the order of G, is g2“(@), where « is defined in equation (4). Then
by looking at the definitions of @ and 8, and by successively applying
the lemma, where we let a =p'@, we see that (recalling /(2) =1)

a(r(@) =B(g) +1r(9), ¢7#2,
a(r(2)) =8(2)+r2)—-1. QED
THEOREM. G(k/ F) completely determines k* in the sense of the super-
natural number N explicitly determining the supernatural number M.

ProoF. Given any g, if ¢g=p, G,=~ (0) by Proposition 1, so s(p) =0.
If 1(q)} N, G,~(0) by Proposition 2, so s(g) =0. If l(q)!N and r(q)
= o, G,~Z(g*) by Proposition 3, so s(g) = . If l(q)! Nandr(g) < »,
G, is finite, nontrivial and, by Proposition 4, s(g) =8(¢q)+r(q) if
g#2, s(2)=p2)+r(2)—1. QED
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