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Let p be a fixed prime number, and k an algebraic extension of

F = Z/pZ. Let Fc be the algebraic closure of F. It is well known that

G(Fe/F) m Z «       II      Zq,
all primes q

where Zq is the a-adic integers. Hence G(k/F) is isomorphic to a

factor group of Z, and is essentially described by a supernatural

number,

(1) N =       II      ?r(8)
all primes q

where r(q) is either finite or infinite, and gr(a) is the degree of the

maximal g-extension of F in k.

We shall show that the multiplicative group of k, k*, is isomorphic

to a subgroup of

Q/Z m £        Z(<f),
all primes q

where Z(<f°) is the g-primary part of Q/Z. Thus k* is also described

by a supernatural number,

(2) M=     n     <rM,
all primes q

where s(q) is either finite or infinite and g*(a> is the "order" of the

g-Sylow subgroup of k*.

We shall see that the s(q)'s are completely determined by the r(q)'s

defined in (1). In particular we shall easily be able to see when k* is

g-divisible for any prime q.

Definition. For any group G, we say G has condition T ii

Va, bEG, 3 a cyclic subgroup H of G such that a, bEH.

Proposition. Any group with condition T is isomorphic to a sub-

group of either Q or Q/Z.

Proof (The proof of this proposition is due to Professor

Michael I. Rosen). Suppose G is a group with condition T. Then G
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is either a torsion group, or a torsion free group, for if a, bEG, such

that a has finite order and b has infinite order, then there exists no

cyclic subgroup containing both a and b, contradicting the assump-

tion that G has condition P. We shall assume that G is a torsion

group, and prove the proposition only in this case. G is an abelian

torsion group, hence it is isomorphic to the direct sum of its primary

parts Gg. We will show that Gg is either cyclic or isomorphic to Z(qa).

This is sufficient to prove our assertion since Z(qx) is the g-primary

component of Q/Z. Obviously if Gq is finite it must be cyclic. Suppose

Gq is infinite, and let hx, h2, h3, • • • be a sequence of distinct elements

of Gq. Let PP be the subgroup generated by hx, • • • , hr. Hr is a finite

cyclic group. Consider the chain PfiCP2c:p"3C • ■ • . This chain

cannot break off. Let H = \J^L0 PP- It is easily seen that H is isomorphic

to Z(qx). Since Z(qa) is a divisible group, H is a direct summand of

Gg. If it were a proper direct summand, Gq would contain a subgroup

isomorphic to Z/qZ@Z/qZ. This is impossible since Z/qZ@Z/qZ does

not have condition T, and condition T is inherited by subgroups.

Thus H=Gq and G9«Z(gM).    QED
Remark, k* has condition T, and is torsion; hence by the above

proposition we can write

(3) **« £ Gq,
all primes q

where GaCZZ(gM). Note that for any prime q, k* is g-divisible if and

only if Gg is isomorphic to either (0) or Z(qx).

Proposition 1. Gp^(0).

Proof. Suppose not. Then k* contains a nontrivial element of

order p. This element would satisfy f(x) =xp —1 =0 over k[x]; but

since the characteristic at k is p, 1 is the only solution to/(x)=0.

QED
Definition. For any prime q^p define l(q) as the smallest positive

integer such that pl^) = l(q).

Proposition 2. For any prime q^p, if l(q)\N, then Gs«(0).

Proof. If Gq «£ (0), then some finite subfield, E, of k has a nontrivial

g-Sylow subgroup of its multiplicative group. We shall show that this

is impossible. Let E be any finite subfield of k. Then for some nEZ,

E* has pn — 1 elements, and l(q)\n, for if it did, it would certainly

divide N. Hence n=-ul(q)+v, 0<v<l(q). p»-l=p*(p«ua)_i)
+ (pv-l). But by the definition of l(q), pul^ = l(q), and p"^l(g),

hence pn — l=pv — 1^0(q), so q\pn—l, and E* has no nonzero

2-subgroup.    QED
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Remark. Notice that F has an /(g)-extension in k ii and only if

l(q)\N.

Proposition 3. Let q^p be any prime, and assume F has an /(g)-

extension in k. Then k* is q-divisible if and only if the maximal q-exten-

sion of F in k is infinite i.e., r(q) = w.

Proof. Suppose the maximal g-extension of F in k is infinite. Since

we are assuming F has an /(g)-extension in k, 3 a finite subfield E

such that E* has pn — 1 elements and n = l(q)m. We have

Pn ~  1  =   (£'<«> -  l)(/>'(«)(m-l) _|_ pHq)im-2) _|_-1_ pl{q, _|_  1)

But by definition pl(q'> = l(q) hence q\p"—l, so Gq*¥(0) (defined in

equation (3)). Thus we must show G9«Z(gw). Since we are assuming

r(q) = t», it suffices to show that g-extensions have strictly increasing

g-Sylow subgroups of their multiplicative groups. We must show

that if

(4) p'W - 1 = qa™tn> q | tn,

thena(ra)>a(ra —1). (Equation (4) defines a (ra).)

pHq)<? _ 1 = (pi<.q)qn~l — 1)(£f(9)<i','"'I(«-i) -|- piWq*~llq-i) _j- . . . _|_ j)

-   q^-l)tn_l(pHq)q"-Hq-l)  +    .   .   .   +  1),

soa(ra)>a(ra —1) because (pwi^t-v + • • • +1) has q terms, each

congruent to 1 mod q, hence is divisible by q.

Now suppose the maximal g-extension of F in k is finite. We saw

in the proof of the first part of this proposition that the assumption

/(g) | N implies Ga#> (0). Hence if k* were g-divisible, we could find a

finite subfield E of k such that the g-Sylow subgroup of E* has more

than ga(r<«» elements. Suppose E is any such finite subfield. There is

no loss of generality in assuming that E contains an /(g)-extension

and a maximal g-extension of F in k. Thus E* has £I(s>8r(»>'" — 1 ele-

ments, where q\m. But

pUq)qrWm _   1    _   /pHq)qr<.'l)  _   J) (j,I(?)«'(!>> (m-1) _J_   .   .   .   _j_ -Q

= g'C'W^^Ms'faXm-i) + . . . + 1))

and since q\m and £'<«> = 1(g), gf(£««>«rW<»-»+ ... +1); hence the

g-Sylow subgroup of E* has only ga('<s» elements, so we have a con-

tradiction. Thus k* is not g-divisible.    QED

The following lemma is due to Van der Waerden (see [l, p. 58]).

Lemma. Let a, r be integers >0 and a an integer > 1. Let qbe a prime

number and
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T = (a"' - l)/(a*r" - 1).

// a prime p divides T and a'"-1 — 1, then q = p. If q divides T, then q

divides a8"-1 —1. Finally, if q>2 or r>l, then T^0(q2).

Proof. We have

T = (a""1 - I)8"1 + g(a«'~' - 1)<-2 + ■ ■ ■ + q.

This proves all the statements except when q = 2, and in that case,

T=(a2r~1 — l)+2, so that these assertions are also obvious.    QED

Definition. We define the function /3(g) for all primes q^p as

follows:

pm - 1 = gt>Mtq,        q\tq,q*2,

p* - l = 2«2>/2,       t2 odd, q = 2.

Proposition 4. Let qbe a prime such that Gq is finite and nontrivial.

Then

s(q) = P(q) + r(q) if q * 2,

5(2) = 0(2) + r(2) - 1        if q = 2, p * 2,

where r and s are defined in equations (1) and (2) respectively.

Proof. Recall that the order of Gq is g*(?). We are assuming Gq is

finite and nontrivial, so P has an /(g)-extension in k, and its maximal

g-extension in k is finite. We also saw in the proof of Proposition 3

that the order of Gq is qa^r(-^\ where a is defined in equation (4). Then

by looking at the definitions of a and fi, and by successively applying

the lemma, where we let a = pl(-q), we see that (recalling 1(2) = 1)

ot(r(q)) = fi(q) + r(q), q * 2,

ot(r(2)) = fi(2) + r(2) - 1.       QED

Theorem. G(k/F) completely determines k* in the sense of the super-

natural number N explicitly determining the supernatural number M.

Proof. Given any q, if g = p, G>« (0) by Proposition 1, so s(p) = 0.

If l(q)l(N, G,«(0) by Proposition 2, so s(q) =0. If /(g)| N and r(q)
= oo, Gq« Z(q°°) by Proposition 3, so 5(g) = oo. If l(q) \ N and r(q)<<*>,

Gq is finite, nontrivial and, by Proposition 4, s(q) =fi(q)+r(q) if

g^2, s(2)=fi(2)+r(2)-l.    QED
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