THE MULTIPLICATIVE GROUP OF ABSOLUTELY ALGEBRAIC FIELDS IN CHARACTERISTIC p

STEPHEN J. TILLMAN

Let p be a fixed prime number, and k an algebraic extension of F = Z/pZ. Let F_e be the algebraic closure of F. It is well known that

$$G(F_c/F) \approx \hat{Z} \approx \prod_{\text{all primes } q} Z_q$$

where Z_q is the q-adic integers. Hence G(k/F) is isomorphic to a factor group of \hat{Z} , and is essentially described by a supernatural number,

$$N = \prod_{\text{all primes } q} q^{r(q)}$$

where r(q) is either finite or infinite, and $q^{r(q)}$ is the degree of the maximal q-extension of F in k.

We shall show that the multiplicative group of k, k^* , is isomorphic to a subgroup of

$$Q/Z \approx \sum_{\text{all primes } q} Z(q^{\infty}),$$

where $Z(q^{\infty})$ is the q-primary part of Q/Z. Thus k^* is also described by a supernatural number,

$$M = \prod_{\text{all primes } q} q^{e(q)},$$

where s(q) is either finite or infinite and $q^{\bullet(q)}$ is the "order" of the q-Sylow subgroup of k^* .

We shall see that the s(q)'s are completely determined by the r(q)'s defined in (1). In particular we shall easily be able to see when k^* is q-divisible for any prime q.

DEFINITION. For any group G, we say G has condition T if $\forall a, b \in G$, \exists a cyclic subgroup H of G such that $a, b \in H$.

PROPOSITION. Any group with condition T is isomorphic to a subgroup of either Q or Q/Z.

PROOF (THE PROOF OF THIS PROPOSITION IS DUE TO PROFESSOR MICHAEL I. ROSEN). Suppose G is a group with condition T. Then G

Received by the editors July 11, 1968.

is either a torsion group, or a torsion free group, for if $a, b \in G$, such that a has finite order and b has infinite order, then there exists no cyclic subgroup containing both a and b, contradicting the assumption that G has condition T. We shall assume that G is a torsion group, and prove the proposition only in this case. G is an abelian torsion group, hence it is isomorphic to the direct sum of its primary parts G_q . We will show that G_q is either cyclic or isomorphic to $Z(q^{\infty})$. This is sufficient to prove our assertion since $Z(q^{\infty})$ is the q-primary component of Q/Z. Obviously if G_q is finite it must be cyclic. Suppose G_0 is infinite, and let h_1, h_2, h_3, \cdots be a sequence of distinct elements of G_o . Let H_r be the subgroup generated by h_1, \dots, h_r . H_r is a finite cyclic group. Consider the chain $H_1 \subseteq H_2 \subseteq H_3 \subseteq \cdots$. This chain cannot break off. Let $H = \bigcup_{i=0}^{\infty} H_i$. It is easily seen that H is isomorphic to $Z(q^{\infty})$. Since $Z(q^{\infty})$ is a divisible group, H is a direct summand of G_q . If it were a proper direct summand, G_q would contain a subgroup isomorphic to $Z/qZ \oplus Z/qZ$. This is impossible since $Z/qZ \oplus Z/qZ$ does not have condition T, and condition T is inherited by subgroups. Thus $H = G_q$ and $G_q \approx Z(q^{\infty})$. QED

REMARK. k^* has condition T, and is torsion; hence by the above proposition we can write

(3)
$$k^* \approx \sum_{\text{all primes } q} G_q,$$

where $G_q \subseteq Z(q^{\infty})$. Note that for any prime q, k^* is q-divisible if and only if G_q is isomorphic to either (0) or $Z(q^{\infty})$.

Proposition 1. $G_p \approx (0)$.

PROOF. Suppose not. Then k^* contains a nontrivial element of order p. This element would satisfy $f(x) = x^p - 1 = 0$ over k[x]; but since the characteristic at k is p, 1 is the only solution to f(x) = 0. QED

DEFINITION. For any prime $q \neq p$ define l(q) as the smallest positive integer such that $p^{l(q)} \equiv 1(q)$.

PROPOSITION 2. For any prime $q \neq p$, if $l(q) \nmid N$, then $G_q \approx (0)$.

PROOF. If $G_q \not\approx (0)$, then some finite subfield, E, of k has a nontrivial q-Sylow subgroup of its multiplicative group. We shall show that this is impossible. Let E be any finite subfield of k. Then for some $n \in \mathbb{Z}$, E^* has p^n-1 elements, and $l(q) \nmid n$, for if it did, it would certainly divide N. Hence n=ul(q)+v, 0 < v < l(q). $p^n-1=p^v(p^{ul(q)}-1)+(p^v-1)$. But by the definition of l(q), $p^{ul(q)}\equiv 1(q)$, and $p^v\not\equiv 1(q)$, hence $p^n-1\equiv p^v-1\not\equiv 0(q)$, so $q\nmid p^n-1$, and E^* has no nonzero q-subgroup. QED

REMARK. Notice that F has an l(q)-extension in k if and only if $l(q) \mid N$.

PROPOSITION 3. Let $q \neq p$ be any prime, and assume F has an l(q)-extension in k. Then k^* is q-divisible if and only if the maximal q-extension of F in k is infinite i.e., $r(q) = \infty$.

PROOF. Suppose the maximal q-extension of F in k is infinite. Since we are assuming F has an l(q)-extension in k, \exists a finite subfield E such that E^* has p^n-1 elements and n=l(q)m. We have

$$p^{n}-1=(p^{l(q)}-1)(p^{l(q)(m-1)}+p^{l(q)(m-2)}+\cdots+p^{l(q)}+1).$$

But by definition $p^{l(q)} \equiv 1(q)$ hence $q \mid p^n - 1$, so $G_q \not\approx (0)$ (defined in equation (3)). Thus we must show $G_q \approx Z(q^{\infty})$. Since we are assuming $r(q) = \infty$, it suffices to show that q-extensions have strictly increasing q-Sylow subgroups of their multiplicative groups. We must show that if

(4)
$$p^{l(q)q^n} - 1 = q^{\alpha(n)}t_n, \quad q \nmid t_n,$$

then $\alpha(n) > \alpha(n-1)$. (Equation (4) defines $\alpha(n)$.)

$$p^{l(q)q^{n}} - 1 = (p^{l(q)q^{n-1}} - 1)(p^{l(q)q^{n-1}(q-1)} + p^{l(q)q^{n-1}(q-2)} + \cdots + 1)$$

$$= q^{\alpha(n-1)}t_{n-1}(p^{l(q)q^{n-1}(q-1)} + \cdots + 1),$$

so $\alpha(n) > \alpha(n-1)$ because $(p^{l(q)q^{n-1}(q-1)} + \cdots + 1)$ has q terms, each congruent to $1 \mod q$, hence is divisible by q.

Now suppose the maximal q-extension of F in k is finite. We saw in the proof of the first part of this proposition that the assumption $l(q) \mid N$ implies $G_q \not\approx (0)$. Hence if k^* were q-divisible, we could find a finite subfield E of k such that the q-Sylow subgroup of E^* has more than $q^{\alpha(r(q))}$ elements. Suppose E is any such finite subfield. There is no loss of generality in assuming that E contains an l(q)-extension and a maximal q-extension of F in k. Thus E^* has $p^{l(q)q^{r(q)}m}-1$ elements, where $q \nmid m$. But

$$p^{l(q)q^{r(q)m}}-1=(p^{l(q)q^{r(q)}}-1)(p^{l(q)q^{r(q)}(m-1)}+\cdots+1)$$

= $q^{\alpha(r(q))}t_{r(q)}(p^{l(q)q^{r(q)}(m-1)}+\cdots+1),$

and since $q \nmid m$ and $p^{l(q)} \equiv 1(q)$, $q \nmid (p^{l(q)q^{r(q)}(m-1)} + \cdots + 1)$; hence the q-Sylow subgroup of E^* has only $q^{\alpha(r(q))}$ elements, so we have a contradiction. Thus k^* is not q-divisible. QED

The following lemma is due to Van der Waerden (see [1, p. 58]).

LEMMA. Let a, r be integers > 0 and a an integer > 1. Let q be a prime number and

$$T = (a^{q^{r}} - 1)/(a^{q^{r-1}} - 1).$$

If a prime p divides T and $a^{q-1}-1$, then q=p. If q divides T, then q divides $a^{q-1}-1$. Finally, if q>2 or r>1, then $T\not\equiv 0(q^2)$.

PROOF. We have

$$T = (a^{q^{r-1}} - 1)^{q-1} + q(a^{q^{r-1}} - 1)^{q-2} + \cdots + q.$$

This proves all the statements except when q=2, and in that case, $T=(a^{2^{-1}}-1)+2$, so that these assertions are also obvious. QED DEFINITION. We define the function $\beta(q)$ for all primes $q \neq p$ as follows:

$$p^{l(q)} - 1 = q^{\beta(q)}t_q,$$
 $q \nmid t_q, q \neq 2,$
 $p^2 - 1 = 2^{\beta(2)}t_2,$ $t_2 \text{ odd}, q = 2.$

PROPOSITION 4. Let q be a prime such that G_q is finite and nontrivial. Then

$$s(q) = \beta(q) + r(q)$$
 if $q \neq 2$,
 $s(2) = \beta(2) + r(2) - 1$ if $q = 2$, $p \neq 2$,

where r and s are defined in equations (1) and (2) respectively.

PROOF. Recall that the order of G_q is $q^{\bullet(q)}$. We are assuming G_q is finite and nontrivial, so F has an l(q)-extension in k, and its maximal q-extension in k is finite. We also saw in the proof of Proposition 3 that the order of G_q is $q^{\alpha(r(q))}$, where α is defined in equation (4). Then by looking at the definitions of α and β , and by successively applying the lemma, where we let $a = p^{l(q)}$, we see that (recalling l(2) = 1)

$$\alpha(r(q)) = \beta(q) + r(q), \qquad q \neq 2,$$

$$\alpha(r(2)) = \beta(2) + r(2) - 1. \quad \text{QED}$$

THEOREM. G(k/F) completely determines k^* in the sense of the supernatural number N explicitly determining the supernatural number M.

PROOF. Given any q, if q = p, $G_p \approx (0)$ by Proposition 1, so s(p) = 0. If $l(q) \nmid N$, $G_q \approx (0)$ by Proposition 2, so s(q) = 0. If $l(q) \mid N$ and $r(q) = \infty$, $G_q \approx Z(q^{\infty})$ by Proposition 3, so $s(q) = \infty$. If $l(q) \mid N$ and $r(q) < \infty$, G_q is finite, nontrivial and, by Proposition 4, $s(q) = \beta(q) + r(q)$ if $q \neq 2$, $s(2) = \beta(2) + r(2) - 1$. QED

BIBLIOGRAPHY

1. Serge Lang, Algebraic numbers, Addison-Wesley, Reading, Mass., 1964.

BROWN UNIVERSITY