ON THE EXISTENCE OF INCOMPRESSIBLE SURFACES IN CERTAIN 3-MANIFOLDS

WOLFGANG HEIL

If M is the closure of the complement of a regular neighborhood of a nontrivial knot in S^3 then there exists a nonsingular torus T embedded in M, which is incompressible (i.e. the inclusion $i: T \rightarrow M$ induces a monomorphism $i_*: \pi_1(T) \rightarrow \pi_1(M)$). If F is any orientable closed incompressible surface embedded in M then $\pi_1(M)$ contains $\pi_1(F)$ as a subgroup. L. Neuwirth [3, Question T] asks whether the converse is true: If $\pi_1(M)$ contains the group $\mathfrak F$ of a closed (orientable) surface of genus g > 1, does there exist a nonsingular closed surface F of genus g whose fundamental group is injected monomorphically into $\pi_1(M)$ by inclusion? As a partial answer we show that not for every such $\mathfrak F \subset \pi_1(M)$ there exists an incompressible $F \subset M$. The question remains open whether M contains incompressible closed surfaces of genus > 1. We show that for torus knots M does not contain such surfaces, by showing that $\pi_1(M)$ does not contain subgroups $\mathfrak F$.

1. Isotopic surfaces. Let M be a compact 3-manifold (orientable or nonorientable). A "surface F in M" always means a 2-sided embedded surface F in M such that $F \cap \partial M = \partial F$. F is incompressible in M iff $F \neq S^2$ and $\ker(i_*: \pi_1(F) \to \pi_1(M)) = 1$, where $i: F \to M$ is the inclusion. We say M is P^2 -irreducible iff M is irreducible (every 2-sphere bounds a ball) and does not contain (2-sided) projective planes. M is called boundary-irreducible iff ∂M is a system of incompressible surfaces.

THEOREM 1. Let M be a P^2 -irredubicle 3-manifold. Let G be an incompressible surface in M and $\mathfrak{F} \subset i_*\pi_1(G) \subset \pi_1(M)$. If there exists an incompressible surface $F \subset M$ such that $\partial F \subset \partial G \cap \partial F$ and $i_*\pi_1(F) = \mathfrak{F}$, then F is isotopic to G.

This follows from theorems obtained by Waldhausen [5]. In particular we need the following:

PROPOSITION [5, Proposition 5.4]. Let M be P^2 -irreducible. Let F and G be incompressible surfaces in M, $\partial F \subset \partial F \cap \partial G$, such that $F \cap G$ consists of mutually disjoint simple closed curves (with transversal intersection at any curve which is not in ∂F). Let H be a surface and suppose there is a map $f: H \times I \rightarrow M$ such that $f \mid H \times 0$ is a covering map onto F

and $f(\partial(H \times I) - H \times 0) \subset G$. Then there is a surface \tilde{H} and an embedding $\tilde{H} \times I \rightarrow M$ such that $\tilde{H} \times 0 = \tilde{F} \subset F$; $Cl(\partial(\tilde{H} \times I) - \tilde{H} \times 0) = \tilde{G} \subset G$ and $\tilde{F} \cap G = \partial \tilde{F}$; moreover if $\tilde{G} \cap F \neq \partial \tilde{G}$ then \tilde{F} and \tilde{G} are discs.

Waldhausen proves this for orientable M, F, G, using his Lemmas 5.1 to 5.3 in [5]. In the nonorientable case 5.1 of [5] may be proved by looking at the orientable 2-sheeted covering of M (see [2]). Then the proofs of Lemmas 5.2 to 5.4 in [5] go through in the nonorientable case as well, noting that F and G are 2-sided in M.

PROOF OF THE THEOREM. Suppose F exists. By small isotopic deformations, constant on ∂M , we may assume that $G \cap F$ consists of a system of closed curves, the number of which is minimal. We claim: There exists a surface H homeomorphic to F and a map $f: H \times I \rightarrow M$ such that $f \mid H \times 0$ is a homeomorphism onto F and $f \mid (H \times 1 \cup \partial H \times I)$ $\subset G$. For, let $f \mid H \times 0$ be $i : F \rightarrow M$. Since $\Re \subset \pi_1(G)$ and $\partial F \subset \partial F \cap \partial G$. we can define the map on $H \times 0 \cup \partial H \times I \cup H^{(1)} \times I$, where $H^{(1)}$ is the 1-skeleton of H, such that $f \mid H^{(1)} \times 1 \subset G$. Since G is incompressible. we can extend this map to a map from $\partial(H \times I) \to M$. Now $\pi_2(M) = 0$ (by our assumption on M and the projective plane theorem [1]; in fact it follows from the Hurewicz-isomorphism on the universal cover that M is aspherical), therefore f can be extended to a map $H \times I \rightarrow M$. The rest of the proof copies the proof of Corollary (5.5) in [5]: by the proposition, there exist pieces $\tilde{G} \subset G$ and $\tilde{F} \subset F$ which are parallel in M such that $\tilde{F} \cap G = \partial \tilde{F}$. If $\tilde{G} \cap F \neq \partial \tilde{G}$ then $\tilde{F} \cup \tilde{G}$ bounds a ball, since M is irreducible. This ball contains a piece $F' \subset F$. Deforming F' out of this ball across \tilde{G} , we could make $F \cap G$ smaller, a contradiction. Hence we have $\tilde{G} \cap F = \partial \tilde{G}$. Therefore there exists an isotopic deformation of F (constant on $F-\tilde{F}$) which throws \tilde{F} onto \tilde{G} . If \tilde{F} would not be all of F, then we could deform $\tilde{F} - \partial F \cap \tilde{F}$ out of G (keeping ∂F fixed) and thereby reduce the intersection number $F \cap G$. Hence $F = \tilde{F}$, $F \cap G = \partial F \subset \partial F \cap \partial G$, hence $\partial \tilde{G} = \tilde{G} \cap F \subset \partial M$ and since $G \cap \partial M = \partial G$ we have $G = \tilde{G}$.

Let \mathfrak{F} be a subgroup of $\pi_1(M)$. We say \mathfrak{F} is carried by a surface $F \subset M$ iff there exists an embedding $i \colon F \to M$ such that $i_*\pi_1(F) = \mathfrak{F}$ and $\ker i_* = 1$.

COROLLARY. Let M be P^2 -irreducible. Let G be a closed incompressible surface of genus >1 in M. Then there exists a subgroup $\mathfrak{F} \subset \pi_1(M)$ which is not carried by a surface $F \subset M$ but is isomorphic to $\pi_1(F)$. (In fact, if G is not a Klein bottle there exist infinitely many non-isomorphic subgroups of $\pi_1(M)$ having this property.)

PROOF. Let F be a finite covering of G such that F is not homeomorphic to G. (Since $G \neq S^2$, P^2 , Torus, Klein bottle, we can construct

infinitely many topologically different compact F's.) Then $p_*\pi_1(F) = \mathfrak{F}$ (where $p: F \rightarrow G$ is the covering map) is a subgroup of $\pi_1(G)$, hence of $i_*\pi_1(G) \subset \pi_1(M)$. If \mathfrak{F} would be carried by F, then by Theorem 1, F would be isotopic to G, a contradiction.

In particular this corollary applies to complements of nontrivial knots as mentioned in the introduction.

2. Surfaces in 3-manifolds which groups have a center. Let \mathfrak{F} be the fundamental group of a closed surface F. If F is orientable suppose genus (F) > 1, if F is nonorientable let genus (F) > 2.

LEMMA. Let M be an irreducible (compact) 3-manifold with $\pi_1(M) \approx \Re \times \mathbb{Z}$, then M is a fibre bundle over S^1 with fiber F.

This is a special case of Stallings theorem [4].

THEOREM 2. Let M be a P^2 -irreducible, boundary irreducible 3-manifold and suppose the center \mathfrak{Z} of $\pi_1(M)$ is infinite. If $\partial M \neq \emptyset$, then $\pi_1(M)$ does not contain a subgroup \mathfrak{F} as above.

PROOF. Suppose there exists $\Re \subset \pi_1(M)$. Then, since the center of \Re is trivial, $\Re \cap 3 = 1$. If $t \in 3$ is of infinite order, the subgroup in $\pi_1(M)$ which is generated by \mathfrak{F} and t is isomorphic to $\mathfrak{F} \times \mathbf{Z}(t)$. If D(M) denotes the double of M, then since M is boundary irreducible, i_* : $\pi_1(M) \rightarrow \pi_1(D(M))$ is a monomorphism, where i: $M \rightarrow D(M)$ is the inclusion (this is well known; a proof may be found, e.g., in [4]). Since D(M) is P^2 -irreducible and $\pi_1(D(M))$ not finite, D(M) is aspherical (see the remark in the proof of Theorem 1). Therefore we can construct a map $f: F \times S^1 \rightarrow D(M)$ which induces the embedding $\mathfrak{F} \times \mathbb{Z} \to \pi_1(M) \xrightarrow{\iota_*} \pi_1(D(M))$. It follows from Waldhausen's theorem [5, Theorem 6.1] (see [2] for the nonorientable case), that f is homotopic to a covering map. In particular, since $F \times S^1$ is compact it follows that $\Re \times Z$ has finite index in $\pi_1(D(M))$ and therefore in $\pi_1(M) \subset \pi_1(D(M))$. Now consider the covering \tilde{M} of M which is associated to $\Re \times Z$. \tilde{M} is compact. Now the universal covering of Mcan be embedded in a ball such that the interior of this ball is contained in the embedding ([5, Theorem 8.1]; the proof in the nonorientable case is quite similar, since the only thing needed is the existence of a hierarchy [2]). Hence \tilde{M} does not contain fake 3-cells, and since $\pi_2(\tilde{M}) = 0$ it follows that \tilde{M} is irreducible. By the lemma, \tilde{M} is a fiber bundle with fiber F, in particular \tilde{M} is closed, which is absurd.

The first part of the proof gives us immediately:

PROPOSITION. Let M be a closed P2-irreducible 3-manifold and sup-

pose the center \mathcal{B} of $\pi_1(M)$ is infinite. If $\pi_1(M)$ contains a subgroup \mathfrak{F} then $F \times S^1$ is a covering of M.

COROLLARY (TO THEOREM 2). The groups

$$| t_{1}, \dots, t_{m}, g_{1}, \dots, g_{n}, a_{1}, b_{1}, \dots, a_{p}, b_{p}, h:$$

$$t_{i}ht_{i}^{-1} = h; g_{i}hg_{i}^{-1} = h; a_{i}ha_{i}^{-1} = h; b_{i}hb_{i}^{-1} = h;$$

$$g_{i}^{a_{i}}h^{\beta_{i}} = 1, (\alpha_{i}, \beta_{i}) = 1, t_{1} \cdots t_{m}g_{1} \cdots g_{n} \prod_{i=1}^{p} [a_{i}, b_{i}] = h^{b}, b \in \mathbb{Z}|$$

do not contain a subgroup K.

These are fundamental groups of Seifert fiber spaces. In particular the groups of torus knots $|g, h: g^{\alpha}h^{\beta} = 1|$ do not contain a subgroup \mathfrak{F} . Hence the complement of a torus knot does not contain closed incompressible surfaces other than Tori.

REMARK. The nonexistence of closed surfaces of genus >1 in irreducible orientable 3-manifolds M with nonempty boundary for which $\pi_1(M)$ has nontrivial center follows immediately from Waldhausen's papers [6], [7]. In [6] Waldhausen proves that these manifolds are Seifert fiber spaces and in [7,§(10.3)] it is remarked that any incompressible surface in M which is not boundary-parallel either consists of Seifert fibers (but does not contain singular fibers) or is a branched covering over the Seifert surface ("Zerlegungsfläche").

References

- 1. D. B. A. Epstein, *Projective planes in 3-manifolds*, Proc. London Math. Soc. 3 (1961), 469-484.
- 2. W. H. Heil, On P²-irreducible 3-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772-775.
- 3. L. Neuwirth, Knot groups, Ann. of Math. Studies, no. 56, Princeton Univ. Press, Princeton, N. J., 1965.
- 4. J. Stallings, On fibering certain 3-manifolds, topology of 3-manifolds and related topics, Prentice-Hall, Englewood, N. J., 1962.
- 5. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88.
- 6. ——, Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505-517.
- 7. ——, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. II, Invent. Math. 4 (1967), 87-117.

RICE UNIVERSITY