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A celebrated theorem of Wedderburn says that a finite associative

division ring is a finite (commutative) field. An elegant proof of this,

due to E. Artin [3, p. 72], reduces the problem to showing the re-

duced (or generic) norm has a nontrivial zero, and then applies the

theorem (conjectured by Artin and proved by Chevalley) that a

polynomial with coefficients in a finite field and zero constant term

has a nontrivial zero in that field if its degree is less than the number

of variables.

The Wedderburn theorem was generalized by A. A. Albert to finite

strictly power-associative division rings of characteristic 5^ 2 in

[1, p. 301] and [2, p. ll] (see also [5]). The proof reduced the power-

associative case to the associative case by using the properties of

Jordan division algebras. It is the purpose of this note to show that

Artin's method carries over directly to the power-associative case

using the generic norm introduced by N. Jacobson [4]. By avoiding

Jordan algebras one is able to extend Albert's result to the character-

istic 2 case.

The usual definition of a division ring requires that left and right

multiplications by a nonzero element be bijective. If the ring is finite

it is necessarily an algebra, over a finite field $, which is algebraic

(even finite-dimensional) and without zero divisors. Also, as we shall

see later, the algebra necessarily has a unit element.

We wish to consider something slightly more general. For our

purposes we say an algebraic power-associative algebra is a division

algebra if it is unital and no element x9^0 is a zero divisor in the sub-

algebra <f[x] it generates (since 4>[x] is finite-dimensional, this is

equivalent to saying x is invertible in $[x]). Our conditions are less

restrictive, since the Jordan algebra of a quadratic form can be a

division algebra in our sense with zero divisors. With this definition

we have

Theorem. A finite strictly power-associative division ring is a finite

(commutative, associative) field.

Proof. The proof is exactly the same as in the associative case.

For completeness, we go through the details. Let {xi, • • • , x„} be a

basis for the division algebra 21 over the finite field <£>. If 12 =

^(vu ■ • • . Vn) is the field obtained by adjoining ra indeterminates

Vu ' ' ' > V" then 3la=fi®$2l is still power-associative by our assump-
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tion that 21 is strictly power-associative, and it still has dimension n

over S2.
Let M(X)=\m+Mm-x(vu • • • , Vn)^n~l+ ' • ' +M0(vi, ■ • • , V»)

be the minimum polynomial of the (generic) element y =171X1+ ■ • •

+j]nXn in SIq over £2. We are mainly interested in the generic norm

N(nx, ■ ■ ■ ,n„) = ( — l)mMo(riu • ■ • , Vn). This is a homogeneous poly-

nomial in <£ [771, • • • ,nn] of degree m with the property that N(alt • • • ,an)

= 0 for atE$ if and only if x=axXx+ • • ■ +anx„ is a zero divisor

in<S>[x] (see [4, pp. 27-28] or [6, pp. 535-538]). Thus the condition

that SI be a division algebra is that N have no nontrivial zeros,

N(ax, • • • , a„) = 0 => (a1} ■ ■ ■ , an) = (0, • • • , 0).

By the theorem of Artin-Chevalley referred to above, the homo-

geneous polynomial N(vx, • • • , r)n) over the finite field 4> will have a

nontrivial zero if its degree m is less than the number of variables n.

Thus our N must have m^n.

On the other hand, by definition of the minimum polynomial of

y—nxXx+ ■ • • +n„Xn the elements 1, y, • • • , ym~l are independent,

so SIq has dimension at least m over fl, and n^m.

Thus n = m, so {l, y, • • • , ym~x} forms a basis for 2ln, and 21q

= £2[y] is commutative and associative. But then 31 was commutative

and associative to begin with, hence a finite field.

The result can be slightly generalized.

Theorem. A generically algebraic division algebra over a finite field

is a finite (commutative, associative) field.

Here "generically algebraic" essentially means "has a generic

minimum polynomial" [6, p. 533]. Recall that a generically algebraic

algebra need not be finite-dimensional—examples are an infinite

purely inseparable field extension of finite exponent, or the Jordan

algebra of a quadratic form on an infinite-dimensional vector space.

However, a generically algebraic division algebra over a finite field is

necessarily finite-dimensional; indeed, by the Artin-Chevalley

theorem its dimension is at most the degree of the generic norm.

Thus the generically algebraic case immediately reduces to the finite

case.

The generic norm depends heavily on the existence of a unit ele-

ment. We now indicate why an algebraic strictly power-associative

algebra without zero divisors necessarily has a unit. Since we want to

include characteristic 2, neither the passage to 21+ nor the properties

of Peirce decompositions are available to us, so we will have to modify
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Albert's proof [l, p. 299], [S, p. 1173]. Each nonzero element x gen-

erates a subalgebra $[x] which is a finite-dimensional commutative

associative algebra without zero divisors, hence a field. In particular,

it has a unit, so there is an idempotent e^O with exx=xex = x. If we

can show that all these idempotents ex coincide, their common value e

will be a unit for all of 21: ex = xe = x. Thus we need only establish

Lemma. If e andf are two idempotents which are not zero divisors in the

strictly power-associative algebra 21, and if 21 has no nilpotent elements,

then e =/.

Proof. By strict power-associativity we can linearize

(i)   [x, x, x] =0,

(ii)   [x2, x, x]=0,

to obtain

(iii)   [x, x, y]+[x, y, x]+[y, x, x]=0,

(iv)  [x2, x, y] + [x2, y, x]+[xy+yx, x, x] = 0.

We first claim ef+fe = z+f = w+e where ez = ze = z, fw = wf — w.

To see this, define z = ef+fe—f, w = ef+fe—e. Setting x = e, y=f in

(iv) gives 0= [e, e,/] + [e,/, e] + [e/+/e, e, e] = [e/+/e-/, e, e] (by

(iii)) = [z, e, e]. Thus (ze)e = ze; since e is not a zero divisor, ze = z.

Similarly we have ez = z, and analogously for w.

Thus (e—f)2 = e — (ef+fe)+f = e—z=f—w, so (e—f)2e=(e — z)e

= e — z = (e—f)2 and (e—f)2f=(f—w)f=f—w = (e—f)2. This shows
(e—f)* — (e—f)2e — (e—/)2/ = 0; our assumption that 21 contains no

nilpotent elements then implies e=/.
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