ON THE EXISTENCE OF FUNDAMENTAL SOLUTIONS OF BOUNDARY PROBLEMS

J. BARROS-NETO1

In this paper we prove an existence theorem for fundamental solutions (see definition below) of a large class of boundary value problems in a half space which includes the Cauchy problem for hyperbolic and parabolic operators with constant coefficients.

As a particular case, we obtain Shilov's result [4] on the existence of *Green's kernels* (see definition below) of Cauchy problems.

The technique employed is that of Fourier transform of tempered distributions. Our theorem relies on Hörmander's result on the division of a tempered distribution by a polynomial [3].

The result of this paper is related to our previous results [1] on the existence of fundamental kernels for regular elliptic boundary problems.

1. Let $P(D, D_t)$ where $D = (D_1, \dots, D_n)$, $D_j = (1/i)(\partial/\partial x_j)$ and $D_t = (1/i)(\partial/\partial x_t)$ be a partial differential operator with constant coefficients. Let $P(\xi, \tau)$ be its characteristic polynomial, assume that the highest order coefficient of τ is independent of ξ and that all the roots of the equation in τ

$$P(\xi,\,\tau)\,=\,0$$

have imaginary parts bounded below by a constant C, for all $\xi \in \mathbb{R}^n$. If m is the degree of $P(\xi, \tau)$ in τ , let

$$Q_1(D, D_t), \cdots, Q_m(D, D_t)$$

be m given partial differential operators with constant coefficients. The operators

$$(P(D, D_t), Q_1(D, D_t), \cdots, Q_m(D, D_t))$$

define a boundary problem in the half space

$$R_+^{n+1} = \{(x, t) : x \in R^n, t > 0\}.$$

THEOREM. Under the above conditions, there are m tempered distributions

$$K_j(x, t) \in S'(\mathbb{R}^n), \quad 1 \leq j \leq m,$$

Received by the editors June 2, 1969.

¹ This research was supported by N.S.F. grant GP-11845.

depending upon a parameter t>0, verifying the boundary problem

(1)
$$P(D, D_t)K_j(x, t) = 0 \text{ on } R_+^{n+1} \\ \lim_{t \to 0+} Q_t(D, D_t)K_j(x, t) = \delta_{t,j} \cdot \delta, \qquad 1 \leq j \leq m,$$

where $\delta_{l,j}$ is the Kronecker symbol, δ the Dirac measure in \mathbb{R}^n and the limit is taken in $S'(\mathbb{R}^n)$.

PROOF. 1. Fix ξ in \mathbb{R}^n and let

$$\tau_1 = \tau_1(\xi), \cdots, \tau_m = \tau_m(\xi)$$

be the m roots (counting multiplicities) of

$$P(\xi,\,\tau)\,=\,0.$$

Let f_1, \dots, f_m be analytic functions of a complex variable τ and define

$$R(P, f_1, \cdots, f_m) = \det f_j(\tau_l) / \prod_{k < l} (\tau_l - \tau_k).$$

It can be shown [2, pp. 231, 232] that $R(P, f_1, \dots, f_m)$ is defined even in the case of multiple zeros, it is an analytic function of all the variables τ_l and we have the estimate

(2)
$$|R(P, f_1, \dots, f_m)| \leq \prod_{i=1}^m \left(\sum_{k=0}^{m-1} \sup_{z \in K} \frac{|f_j^{(k)}(z)|}{j!} \right)$$

where K denotes the convex hull of the zeros τ_1, \dots, τ_m of P.

2. Set $f_j(\tau) = Q_j(\xi, \tau)$ and define

$$C(\xi) = R(P, Q_1, \dots, Q_m) = \det Q_j(\xi, \tau_l(\xi)) / \prod_{k < l} (\tau_l(\xi) - \tau_k(\xi)),$$
$$\xi \in \mathbb{R}^n.$$

which is called the *characteristic function* of the given boundary problem.

 $C(\xi)$ is, obviously, a symmetric function of τ_1, \dots, τ_m , thus it can be expressed as a polynomial on the coefficients of τ in $P(\xi, \tau)$, that is to say, $C(\xi)$ is a polynomial in ξ .

3. Consider, now, the following function

$$H_j(\xi,t) = R(P,Q_1(\xi,\tau(\xi)),\cdots,e_j^{it\tau(\xi)},\cdots,Q_m(\xi,\tau(\xi))),$$

 $1 \le j \le m$, defined for all $\xi \in \mathbb{R}^n$ and all $t \ge 0$.

From our assumption on $P(\xi, \tau)$ it follows that there are constants A and B such that the zeros of $P(\xi, \tau)$ satisfy the inequality

$$|\tau| \leq A(|\xi|^B + 1).$$

From inequalities (2), (3) and our assumption that the imaginary parts of the roots of $P(\xi, \tau) = 0$ are bounded below by C we get for each fixed $t \ge 0$, the estimate

$$|H_j(\xi,t)| \leq A' |\xi|^{B'} e^{-tC}, \quad \xi \in \mathbb{R}^n.$$

This shows that, for each $t \ge 0$, $H_j(\xi, t)$ defines a tempered distribution in ξ .

4. According to a result due to Hörmander [3], we can divide the tempered distribution $H_j(\xi, t)$ by the polynomial $C(\xi)$ and the result

$$U_j(\xi, t) = H_j(\xi, t)/C(\xi), \qquad 1 \leq j \leq m,$$

is a tempered distribution on \mathbb{R}^n , depending upon $t \ge 0$.

Next, it can be proved that each $U_j(\xi, t)$ verifies the following initial valued problem derived from (1) by taking Fourier transform on x:

$$P(\xi, D_t)U_j(\xi, t) = 0, \qquad \forall \xi \in \mathbb{R}^n, \quad \forall t \geq 0,$$

$$Q_l(\xi, D_t)U_j(\xi, 0) = \delta_{j,l}, \qquad l = 1, 2, \dots, m.$$

5. Let

$$K_j(x, t) = F_{\xi}^{-1} U_j(\xi, t), \qquad 1 \leq j \leq m,$$

be the inverse Fourier transform of $U_j(\xi, t)$. For each $t \ge 0$, $K_j(x, t) \in S'(\mathbb{R}^n)$ and it is obvious that K_j verifies problem (1). Q.E.D.

DEFINITION. We call (K_1, K_2, \dots, K_m) the fundamental solution of the boundary problem (P, Q_1, \dots, Q_m) .

A solution of the boundary value problem

$$P(D, D_t)u = 0$$
 in R^{n+1}_+ , $Q_j(D, D_t)u|_{t=0} = g_j$, $1 \le j \le m$,

where g_i are smooth functions is given by

$$u(x, t) = \sum_{j=1}^{m} K_{j}(\cdot, t) * g_{j},$$

the convolution being taken with respect to x.

APPLICATION. If we take as boundary operators the following ones

$$O_1 = 1, \qquad O_2 = D_t, \cdots, O_m = D_t^{m-1}$$

our theorem gives, as a particular case, the Green's kernel of the

Cauchy problem, namely, a tempered distribution

$$G(x, t) \in S'(\mathbb{R}^n), \quad t \geq 0,$$

verifying the equations:

$$P(D, D_t)G(x, t) = 0 \quad \text{in} \quad R_+^{n+1},$$

$$G(x, 0) = 0,$$

$$D_tG(x, 0) = 0,$$

$$\cdots \cdots \cdots$$

$$D_t^{m-1}G(x, 0) = \delta.$$

REFERENCES

- 1. J. Barros-Neto, Kernels associated to general elliptic problems, J. Functional Anal. 3 (1969), 173-192.
- 2. L. Hörmander, On the regularity of the solutions of boundary problems, Acta Math. 99 (1958), 225-264. MR 24, A1503.
- 3. , On the division of distributions by polynomials, Ark. Math. 3 (1958), 555-568. MR 23 #A2044.
- 4. G. E. Šilov, Well-posed boundary-value problems in a half-space for linear partial differential equations with constant coefficients, Uspehi Mat. Nauk. 19 (1964), no. 3 (117), 3-52 = Russian Math. Surveys 19 (1964), no. 3, 1-52. MR 29 #4988.

RUTGERS UNIVERSITY