RADICALS WITH INTEGRITY AND ROW-FINITE MATRICES

FRANKLIN HAIMO1

Let S be a ring, and let m be any infinite cardinal. Let MS be the ring of row-finite m-by-m matrices over \mathfrak{S} . Patterson [5], [4] showed that JMS, the Jacobson radical of MS, is the ring MJS of m-by-m row-finite matrices over the Jacobson radical 35 of 5 if and only if a right-vanishing condition due to Levitzki holds on SS. (See [2] for related material.) This condition forces 35 to be highly nil and is, in a sense, antithetical to integrity (no divisors of zero). For a ring S, let BS be the ideal of row-bounded matrices in MS. That is, $B \in \mathfrak{BS}$ if and only if $B \in \mathfrak{MS}$, and B has all its nonzero entries (if there be any) lying exclusively in a finite subset of its columns, this subset depending upon B. It is well known |5|, |4|, |6|, |1| that $\mathfrak{BSS} \subseteq \mathfrak{IMS} \subseteq \mathfrak{MSS}$. If a condition that is basically opposite to Levitzki's were to be imposed upon 35, we should expect a result rather far from that of Patterson's, as is indeed the case. Dr. A.D. Sands, in a private communication, has reported his obtaining the result of this paper in the special case where \mathfrak{S} is the ring of p-adic integers. His method involves expressing B3© as an intersection of primitive ideals.

Theorem. Let \mathfrak{S} be a ring for which \mathfrak{JS} has integrity. Then $\mathfrak{B}\mathfrak{JS}$ = $\mathfrak{JMS} < \mathfrak{MSS}$.

Proof. At various stages of the proof, it will be convenient for \mathfrak{S} to have a unity. Recall [3, Theorem 2, p. 11] that \mathfrak{S} can be embedded as an ideal in a ring \mathfrak{S}' with a unity in such a way that $\mathfrak{IS}' = \mathfrak{IS}$. Now suppose that we could show that $\mathfrak{IS}' = \mathfrak{IS}$. But $\mathfrak{IS}' = \mathfrak{IS} \mathfrak{S} \leq \mathfrak{IS} \mathfrak{S} = \mathfrak{IS} = \mathfrak{IS}$

Suppose that there is some $M \in \mathfrak{IMS} \setminus \mathfrak{BS}$. Then $M = (m(\alpha, \beta))$ where

- (1) each $m(\alpha, \beta) \in \Im \mathfrak{S}$,
- (2) α and β traverse some well-ordered index class Λ of cardinality m, and

Received by the editors September 5, 1968.

¹ This work was supported, in part, by National Science Foundation Grants GP-7138 and GP-7175.

- (3) for each $\alpha \in \Lambda$, only a finite number of $m(\alpha, \beta)$ are nonzero. Since $M \in \mathfrak{BSS} = \Lambda$, the zero matrix. There must, therefore, be some row with at least one nonzero entry. In the ordering of Λ let $\alpha_1 \in \Lambda$ be the least such that the row with index α_1 has at least one nonzero entry. Let the nonzero entries occur in columns with indices $\gamma_i^1 \in \Lambda$, where i < j implies that $\gamma_i^1 < \gamma_j^1$, and where $i = 1, \dots, r(1)$ for some positive integer r(1). Suppose that we have found a finite increasing set of indices $\alpha_j \in \Lambda$, $\alpha_1 < \dots < \alpha_k$, where k is a positive integer, such that α_j is least with the properties
- (1) if $k \ge 2$, $\alpha_{j-1} < \alpha_j$ for $2 \le j \le k$, where the row with index α_j has at least one nonzero entry;
- (2) if the nonzero entries of the row with index α_i occur in the columns with indices $\gamma_i^j (1 \le i \le r(j))$, where s < t implies that $\gamma_i^j (1 \le s, t \le r(j))$, then, as finite sets,

$$\left\{\gamma_{1}^{j}, \dots, \gamma_{r(j)}^{j}\right\} \stackrel{j-1}{\leq} \bigcup_{u=1}^{j-1} \left\{\gamma_{1}^{u}, \dots, \gamma_{r(u)}^{u}\right\}$$

for $j=2, \cdots, k$ (if $k \ge 2$).

Suppose that M has no further row with at least one nonzero entry in some column with index equal to none of the γ_i^j already used. Then $M \in \mathfrak{BSS}$, contrary to assumption. Thus, there exists least $\alpha_{k+1} \in \Lambda$ such that

- (1) $\alpha_k < \alpha_{k+1}$ and the row with index α_{k+1} has at least one nonzero entry;
- (2) if the nonzero entries of the row with index α_{k+1} occur in the columns with indices $\gamma_i^{k+1}(1 \le i \le r(k+1))$, where s < t implies that $\gamma_i^{k+1} < \gamma_i^{k+1}(1 \le s, t \le r(k+1))$, then, as finite sets,

$$\left\{\gamma_1^{k+1}, \cdots, \gamma_{r(k+1)}^{k+1}\right\} \stackrel{k}{\leq} \bigcup_{u=1}^{k} \left\{\gamma_1^{u}, \cdots, \gamma_{r(u)}^{u}\right\}.$$

The induction shows that there exists a strictly ascending countable sequence of indices $\alpha_1 < \alpha_2 < \cdots$ such that

- (1) the row with index α_i has at least one nonzero entry, these entries occurring in columns with indices $\gamma_i^j (1 \le i \le r(j))$, where s < t implies that $\gamma_s^j < \gamma_i^j (1 \le s, t \le r(j))$;
 - (2) for $j \ge 2$, α_j is least with property (1), with $\alpha_{j-1} < \alpha_j$, and with

$$\left\{\gamma_{1}^{j}, \cdots, \gamma_{r(j)}^{j}\right\} \stackrel{j-1}{\leq} \bigcup_{u=1}^{j-1} \left\{\gamma_{1}^{u}, \cdots, \gamma_{r(u)}^{u}\right\}.$$

Let $\Gamma = \bigcup_{i} \bigcup_{i=1}^{r(i)} \{\gamma_{i}^{j}\}$, a countable nonfinite set. Let the distinct members of Γ be enumerated by increasing size in $\Lambda: \delta_{1} < \delta_{2} < \cdots$.

Let A be an m-by-m matrix $(a(\alpha, \beta))$, $a(\alpha, \beta) \in \mathfrak{S}$ for all $\alpha, \beta \in \Lambda$, and let the indices $1, 2, \dots, j, \dots$ stand for the initial members of Λ . For $j=1, 2, 3, \dots$, let $a(j, \alpha_j)=1$ (the unity of \mathfrak{S} , appearing for the first time in the proof). Let all other $a(\alpha, \beta)=0$. By construction, $A \in \mathfrak{M}\mathfrak{S}$. The matrix A is used to remove all the unused rows of M, and

$$AM = \begin{pmatrix} \alpha_1\text{-st row of } M \\ \vdots & \vdots \\ \alpha_j\text{-th row of } M \\ \vdots & \vdots \end{pmatrix}$$

Let D be an m-by-m matrix $(d(\alpha, \beta))$, $d(\alpha, \beta) \in \mathfrak{S}$ for all $\alpha, \beta \in \Lambda$. For $j=1, 2, 3, \cdots d(\delta_j, j)=1$, and let all other $d(\alpha, \beta)=0$. Since $\delta_1 < \delta_2 < \cdots$, $D \in \mathfrak{MS}$. The matrix D is used to remove all the columns of AM that are not used. Then $C = AMD \in \mathfrak{MSS} \setminus \mathfrak{SSS} \subseteq \mathfrak{MSS}$; and $C = (c(\alpha, \beta))$, $c(\alpha, \beta) \in \mathfrak{SS}$, where there exist positive integers s(i) $(i < \omega)$, the first infinite ordinal) such that

- (1) $c(i, s(i)) \neq 0$, while $c(i, \beta) = 0$ if $\beta \in \Lambda$ and $\beta > s(i)$;
- (2) the set S of the s(i) is not bounded above; and
- (3) if $\alpha \in \Lambda$ and if $\alpha \ge \omega$ then $c(\alpha, \beta) = 0$ for all $\beta \in \Lambda$.

The *i*th row $(i < \omega)$ of *C* has the form $(c(i, 1), \dots, c(i, s(i)), 0, 0, \dots)$. Among all the s(i) there is a least one, s_1 ; let i_1 be least in Λ such that $s(i_1) = s_1$. Suppose that $i_1, \dots, i_k, s_1, \dots, s_k \in \Lambda$, each $< \omega$, have been found such that s_j is least with respect to the requirements that $s_{j-1} < s_j = s(i)$ for at least one i $(2 \le j \le k \text{ if } k \ge 2)$; and i_j is least such that $s(i_j) = s_j$, $j = 1, \dots, k$. Since *S* is not bounded above, there exists least s_{k+1} such that $s_k < s_{k+1} = \text{some } s(i)$; and let i_{k+1} be least among the *i* for which $s(i) = s_{k+1}$.

Let $T = (t(\alpha, \beta))$ be a matrix for which each $t(\alpha, \beta) \in \mathfrak{S}$ for all $\alpha, \beta \in \Lambda$. For $j < \omega$ let $t(j, \beta) = 0$ if $\beta \neq i_j$, and let $t(j, i_j) = 1$. For $\alpha \in \Lambda$, $\alpha \geq \omega$, let $t(\alpha, \beta) = 0$ for all $\beta \in \Lambda$. The matrix T rearranges the rows of C = AMD so that the last nonzero entry of row i is to the left of the last nonzero entry of row j for any j > i. Then $T \in \mathfrak{MS}$, and $U = TC \in \mathfrak{MS} \setminus \mathfrak{SSS} \leq \mathfrak{MSS}$, where $U = (u(\alpha, \beta))$, $u(\alpha, \beta) \in \mathfrak{SS}$ for all $\alpha, \beta \in \Lambda$. The jth row of $U(j < \omega)$ has the form $(u(j, 1), \cdots, u(j, s_j), 0, 0, \cdots)$ where $u(j, s_j) \neq 0$. Further, each $u(\alpha, \beta) = 0$ for all $\beta \in \Lambda$ whenever $\alpha \in \Lambda$ and $\alpha \geq \omega$.

Let the matrix $V = (v(\alpha, \beta))$, $v(\alpha, \beta) \in \mathfrak{S}$ for all $\alpha, \beta \in \Lambda$, have the entries $v(s_i, i) = 1$ for all $i < \omega$ but where $v(\alpha, \beta) = 0$ otherwise. By construction, $V \in \mathfrak{MS}$; and $W = UV \in \mathfrak{MS} \setminus \mathfrak{MSS} \leq \mathfrak{MSS}$ where $W = (w(\alpha, \beta))$, $w(\alpha, \beta) \in \mathfrak{SS}$ for all $\alpha, \beta \in \Lambda$, and, for all $i < \omega$, w(i, j)

 $=u(i, s_i)$ provided $j \le i$, while all other $w(\alpha, \beta) = 0$. The matrix V puts the last nonzero entries of W = TAMD on the diagonal:

$$TAMDV = \begin{cases} s(i_1) & 0 & 0 & 0 & \cdots \\ \vdots & s(i_2) & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{cases}.$$

Let $N = (n(\alpha, \beta))$, $n(\alpha, \beta) \in \mathfrak{S}$ for all $\alpha, \beta \in \Lambda$, where n(j, j+1) = 1 for all $j < \omega$, and where $n(\alpha, \beta) = 0$ otherwise. Again, $N \in \mathfrak{MS}$, and $E = WN \in \mathfrak{MS} \otimes \mathfrak{MSS} \leq \mathfrak{MSS}$. Note that $E = (0 \mid W)$ where the 0 represents a single column of zeros.

Let $Y = (y(\alpha, \beta))$, $y(\alpha, \beta) \in \mathfrak{J} \otimes$ for all $\alpha, \beta \in \Lambda$, be the quasi-inverse of E in $\mathfrak{J} \otimes \mathfrak{M} \otimes \subseteq \mathfrak{M} \mathfrak{J} \otimes$. Since YE has no nonzero column with index ω or beyond, and, since YE = Y + E is row-finite, the first row of Y has the form $(0, y(1, 2), \dots, y(1, t_1), 0, 0, \dots)$ where the y(i, j) lie in $\mathfrak{J} \otimes \mathfrak{J} \otimes \mathfrak{J$

Let I be the identity matrix of \mathfrak{MS} . Then

$$B = I - E = I - TAMDVN \in \mathfrak{MS}$$

is invertible with inverse X = I - Y. Note that the entry in the first row and (t_1+1) -st column of I is zero since $t_1 \ge 2$. Now express I as XB. The first row of X is $(1, -y(1, 2), \cdots, -y(1, t_1), 0, 0, \cdots)$; the (t_1+1) -st column transpose of B is $(0, \cdots, 0, -w(t_1, t_1), *, *, *, \cdots) = (0, \cdots, 0, -u(t_1, s_{t_1}), *, *, *, \cdots)$, the significant entry occurring in the t_1 -st place. The inner product of these two rows is, on the one hand, $y(1, t_1)u(t_1, s_{t_1})$, and, on the other, 0. But $y(1, t_1)$ and $u(t_1, s_{t_1})$ are nonzero entries of $\Im \mathfrak{S}$, contradicting the integrity of $\Im \mathfrak{S}$ and establishing the theorem.

REFERENCES

- 1. F. Haimo, Endomorphism radicals which characterize some divisible groups, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967), 25–29.
- 2. ——, "The Jacobson radical of some endomorphism rings," in *Studies on Abelian groups*, edited by B. Charles, Paris, 1968, pp. 143-146.
- 3. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R. I., 1964. MR 18, 373.
- 4. E. M. Patterson, On the radicals of certain rings of infinite matrices, Proc. Roy. Soc. Edinburgh Sect. A 65 (1960), 263-271. MR 24 #A746.
- 5. ——, On the radicals of rings of row-finite matrices, Proc. Roy. Soc. Edinburgh Sect A 66 (1961/62), 42-46. MR 26# 151.
- A. D. Sands, Primitive rings of infinite matrices, Proc. Edinburgh Math. Soc.
 14 (1964/65), 47-53. MR 29 #5858.
- 7. Rebecca Slover, The Jacobson radical of row-finite matrices, J. Algebra, 12 (1969), 345-359.