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Let © be a ring, and let m be any infinite cardinal. Let 9K© be the

ring of row-finite m-by-m matrices over ©. Patterson [5], [4] showed

that 39Ji©, the Jacobson radical of 5T/J©, is the ring 9J?3© of m-by-m

row-finite matrices over the Jacobson radical 3© of © if and only if

a right-vanishing condition due to Levitzki holds on 3©. (See [2]

for related material.) This condition forces 3© to be highly nil and

is, in a sense, antithetical to integrity (no divisors of zero). For a ring

©, let S3© be the ideal of row-bounded matrices in 9JJ©. That is,

PG93© if and only if PGSJt©, and P has all its nonzero entries (if

there be any) lying exclusively in a finite subset of its columns, this

subset depending upon P. It is well known [S], [4], [6], [l] that

33S©^39JJ©^9JZ3©. If a condition that is basically opposite to

Levitzki's were to be imposed upon 3©i we should expect a result

rather far from that of Patterson's, as is indeed the case. Dr. A.D.

Sands, in a private communication, has reported his obtaining the

result of this paper in the special case where © is the ring of £>-adic

integers. His method involves expressing 333© as an intersection of

primitive ideals.

Theorem. Let © be a ring for which 3© has integrity. Then 933©

= 32fl©<2«3©-

Proof. At various stages of the proof, it will be convenient for ©

to have a unity. Recall [3, Theorem 2, p. 11 ] that © can be embedded

as an ideal in a ring ©' with a unity in such a way that 3©' = 3©-

Now suppose that we could show that 933©' = 39K©'- But 933©'

= 933©^3SDJ©, so that 32tt@'^32K@^9ft3©. Since © is an ideal
in ©', 9fl@ is an ideal in SDJ©', whence 39fl@ = 9tt©n32R©' ^ 32ft©'.
Thus, 32K©=39ft©', and 933© = 3SK@<^3©. The proof is
thereby reduced to the case where © has a unity.

Suppose that there is some MG39ft©\933©- Then M=(m(a, $))

where

(1) eachw(a,S)G3©,

(2) a and j3 traverse some well-ordered index class A of cardinality

m, and
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(3) for each «GA, only a finite number of m(a, j3) are nonzero.

Since MG333®, Mt*0, the zero matrix. There must, therefore, be

some row with at least one nonzero entry. In the ordering of A let

aiGA be the least such that the row with index ax has at least one

nonzero entry. Let the nonzero entries occur in columns with indices

7iGA, where i<j implies that 7<1<7J1, and where i = l, ■ • • , r(l) for

some positive integer r(l). Suppose that we have found a finite in-

creasing set of indices a/EK c<i< • - - <ak, where k is a positive

integer, such that ctj is least with the properties

(1) if k2i2, ay_i<ay for 2^j^k, where the row with index ay has

at least one nonzero entry;

(2) if the nonzero entries of the row with index ay occur in the

columns with indices y[(l^i^r(j)), where s<t implies that y{

<y*,(l^,s, t^r(J)), then, as finite sets,

(71,   •   •   •  ,7rU)}   S   U    {t1,   •   •   •  , 7r(u>}
u=l

for j = 2, • • • , k (if k^2).
Suppose that M has no further row with at least one nonzero entry

in some column with index equal to none of the y{ already used. Then

-M~G333©, contrary to assumption. Thus, there exists least a*+iGA

such that

(1) afc<«jfc+i and the row with index ak+i has at least one nonzero

entry;

(2) if the nonzero entries of the row with index a*+i occur in the

columns with indices y*+1(l^i^r(k-\-l)), where s<t implies that

Y*+1<Y?+1(i £s, t^r(k + l)), then, as finite sets,

{ti    , ■ • • , 7r(i+i)}  $  U   {yi, • • • , Yr(u)}-
u-l

The induction shows that there exists a strictly ascending count-

able sequence of indices ax<a2< • • •  such that

(1) the row with index ay has at least one nonzero entry, these

entries occurring in columns with indices y{(l ^i^r(j)), where s<t

implies that yl<yi(l ^Ls, t^r(j));

(2) for j ^2, ay is least with property (1), with ay_i<ay, and with

/-i

(7l,  •   •   •  , 7r0)}   $   U   {yi,  ■   ■   ■  , 7r(u)}.
M=l

Let r = UyUJif\ {yi}, a countable nonfinite set. Let the distinct

members of T be enumerated by increasing size in A: 5i<52< • ■ • .
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Let A be an m-by-m matrix (a(a, (3)), a(a, |3)G© for all a, /3GA, and

let the indices 1,2, ■ • ■ , j, ■ ■ • stand for the initial members of A.

For/ = 1,2,3, • • • , let a(j, af) = 1 (the unity of ©, appearing for the

first time in the proof). Let all other a(a, /3)=0. By construction,

AE'SSl®. The matrix A is used to remove all the unused rows of M,

and

ai-st row of M'

AM =   ay-th row of M

Let D be an m-by-m matrix (d(a, /3)), d(a, jS)G© for all a, /3GA. For

_7 = 1, 2, 3, • • • d(8j, j) = l, and let all other d(a, /S) = 0. Since Si<52
< • • • , PG9W©. The matrix D is used to remove all the columns of

AM that are not used. Then C = 4MPG32)fJ©\933© = a)?3©; and
C=(c(a, /3)), c(a, j3)G3©. where there exist positive integers s(i)

(i<o), the first infinite ordinal) such that

(1) c(i, s(i))^0, while c(i, /S) = 0 if /3GA and fl>*(/);
(2) the set S of the s(i) is not bounded above; and

(3) if a£A and if a^co then c(a, /3) =0 for all /3GA.

Theithrow (/<co)of Chastheform (c(i, 1), • • • , c(i, s(i)), 0,0, • ■ • )■

Among all the s(i) there is a least one, Si] let ii be least in A such that

s(ii)=Si. Suppose that ii, • • • , ik, Si, • • • , sjtGA, each <w, have

been found such that s,- is least with respect to the requirements that

Sj-i<sj = s(i) for at least one i (2^j^k if k^2); and i, is least such

that s(i/)=Sj, j=l, ■ • ■ , k. Since S is not bounded above, there

exists least sk+i such that sk<sk+i = some s(i); and let 4+i be least

among the i for which s(i) =sk+i.

Let P= (t(a, /3)) be a matrix for which each t(a, |8)G© for all a, )3

GA. For j <co let t(j, /3) = 0 if ^ j*ij, and let t(j, if) = 1. For a£A, a^co,

let t(a, j3)=0 for all |3GA. The matrix P rearranges the rows of

C = AMD so that the last nonzero entry of row i is to the left of the

last nonzero entry of row j for any j>i. Then PG9Jt©, and U

= PCG3SJJ©\933©^9K3@, where U=(u(a, (3)), u(a, /3)G3@ for
all a, j3GA. The jth row of U (j<u) has the form (u(j, 1), ■ ■ • ,

«(/» sf), 0, 0, • • • ) where u(j, Sj)t*0. Further, each u(tx, /3) =0 for all

)3GA whenever a£A and a^co.

Let the matrix F=(i>(a, j3)), via, /3)G© for all a, /3GA, have the

entries d(5,-, i) = l for all i<w but where via, /3)=0 otherwise. By

construction, FGSJJ©; and PF= PFG32ft©\933©g9)J3© where
W= iwia, /3)), w(a, /3)G3© for all a, j3GA, and, for all i<w, w(i, j)
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= u(i, sj) provided j ^ i, while all other w(a, /3) =0. The matrix Fputs

the last nonzero entries of W=TAMD on the diagonal:

s(ii)      0        0        0        • ■ •

s(i2)      0 0
TAMDV =

Let N=(n(a, 0)), n(a, /3)G© for all a, /3GA, where n(j,j+l) = l

for all j<oi, and where n(a, j3)=0 otherwise. Again, AG9W®, and

£=JFAG39W©\333©g9tt3@. Note that E = (0\W) where the 0
represents a single column of zeros.

Let F= (y(a, /3)), y(a, @)E3& for all a, j3GA, be the quasi-inverse

of E in 39Jc@ = 2ft3@- Since YE has no nonzero column with index

co or beyond, and, since YE = Y-\-E is row-finite, the first row of Y

has the form (0, y(l, 2), • • • , y(l, h), 0, 0, • • • ) where the y(i, j)

lie in 3®, 2^h<o:, and y(l, /i)^0.

Let I be the identity matrix of SfJt®. Then

B = I - E = I- TAMDVN E Wl&

is invertible with inverse X = I— Y. Note that the entry in the first

row and (<i+l)-st column of / is zero since ti^2. Now express I as

XB. The first row of A is (1, -y(l, 2), • • • , -y(l, h), 0, 0, • • ■ );
the (Zi-fT)-st column transpose of Pis (0, • • • , 0, —w(ti,ti),*,*, • • • )

= (0, • • • , 0, —u(h, stl), *,*,•••)> the significant entry occurring

in the h-st place. The inner product of these two rows is, on the one

hand, y(l, h)u(ti, sh), and, on the other, 0. But y(l, h) and u(h, sh)

are nonzero entries of 3®, contradicting the integrity of 3<g and

establishing the theorem.
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