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In a nonassociative ring A, the symbol (a, 6, c) where a, b, c are

elements of A is defined as (a, b, c) = (ab)c — a(bc). The symbol [a, b]

where a, 6 are elements of A is defined as [a, b] =ab — ba. The nucleus

of A, N(A)= {nEA\ (re, a, 6) = (a, n, 6) = (a, 6, n) = 0 for all a, bEA ).

The center of A, C(A) = {sEN(A)\ [s, a] =0 for all aEA). A trivial

ideal of A is an ideal ly±0 of A such that P = 0.

A ( — 1, 1) ring A is a nonassociative ring in which the following

identities are assumed to hold.

(1) (a, b, c) + (a, c, b) = 0,

(2) (a, b, c) + (6, c, a) + (c, a,b)=0

for all a, 6, c elements of A. A ( — 1, 1) algebra is a ( — 1, 1) ring with

identity which is also a finite dimensional vector space over a field F

which satisfies a(ab) =a(ab) = (aa)b for all a, 6 elements of A, a in F.

We shall not require that a subalgebra of A contain the identity of

A, though we do require that it contain an identity of its own.

When hypotheses are placed on a ring as a whole, often these

hypotheses imply certain properties for the center. For example, the

center of a simple ring is a field. It is possible then, that hypotheses

placed on the center will be reflected in the structure of the whole

ring. What hypotheses are possible? Keeping in mind that the center

of a simple ring is a field, one might suggest we assume that the center

is simple, or semisimple. We could assume there are no ideals of the

whole ring contained in the center. Or, we might assume that the

center has no nilpotent elements. In this paper we show that any one

of these conditions is sufficient to make a ( — 1, 1) algebra associative.

We prove the theorem:

Theorem. If A is a ( — 1, 1) algebra over afield of characteristic

9^2, 3, and the center of A contains no trivial A ideals, then A is asso-

ciative.

In this proof we use Albert's result that semisimple finite dimen-

sional right alternative algebras are alternative [2], and Wedder-

burn's structure theorem that semisimple associative algebras are

complete direct sums of matrix rings over division rings [3]. We use

Maneri's result that for a ( — 1, 1) algebra of characteristic 9^2, 3,

(A, A, A) is an ideal [5], and we use the results in my paper [4] in

several places.
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We now start the proof of the theorem.

Lemma 1 (Albert). Let A be a finite dimensional power associative

algebra. If x is a nonnilpotent element of A, then some polynomial in

positive powers of x is a nonzero idempotent.

The proof proceeds by induction on the dimension of the subspace

generated by x. Or you may find the proof in [l, p. 23].

We shall call an element x invertible if there exists a y such that

xy—yx = \, and (a, x, y) = 0 for all elements a in the ring.

Lemma 2. In a ( — 1, 1) algebra of characteristic ^2 with no idem-

potents t^O, 1, every element is either invertible or nilpotent.

Proof. In a ( — 1, 1) ring characteristic f^2 implies (a, xr, x*)=0for

all elements a, x and for any positive integers r and 5. See [4] state-

ment (3) for a proof. This fact implies that a ( — 1, 1) ring is power

associative. By Lemma 1, every nonnilpotent element x is invertible

and x_1 is a polynomial in x. Because x_1 is a polynomial in x, we

have (a, x, x_1) = 0.

By a Peirce decomposition of a ring A with respect to an idem-

potent e, we mean a decomposition of A as A =^4ii+y4io+^4oi+^loo

(additive direct sum), where eXij — SuXij, x,7e = 5iyx,j<=>xlyG^4,7, and

AijAmnEo~jmAin. (b~n is the Kronecker delta: Sy = 0 if i^j, 8,-, = 1.)

Theorem 1. Let A be a ( — 1, 1) ring with characteristic not 2 or 3,

with an idempotent e^O, 1, and with no trivial A ideals in the center of

A. Then A =^4ii4-v4io+^4oi+^4oo (Peirce decomposition) and ^4io^4oi

-\-A io -\-A oi+A oiA io is an ideal contained in the nucleus.

Proof. This is Theorem 2 of [4].

Theorem 2. If A is a ( — 1, 1) algebra over a field F of characteristic

5*2, 3 and there are no trivial A ideals in the center of A, then A = ^2 A ,•

-\-N (vector space direct sum) where N is contained in an ideal contained

in the nucleus, A ,• is a subalgebra with no idempotents except 0 and the

identity of A,-, and A tAj = 0 if i ?±j.

Proof. If A contains no idempotents except 0 or 1, we are through.

If not, then A has an idempotent 5^0, 1 and a Peirce decomposition

A =Aii-\-Aio+Aoi+ABO and we can write A- XX o Ai+N (vector
space direct sum) where

(1) N is contained in an ideal in the nucleus,

(2) A{ is a nonzero subalgebra with identity et, and

(3) A{Aj = 0 if «Vj.
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Of all the decompositions A = ]£?=i Ai+N satisfying (1), (2), (3),

pick one with the largest value re. I claim that in such a decomposi-

tion, each of the subalgebras Ai have no idempotents except 0 and

the identity e< of A{. Suppose A = 22"=o ̂ i + A7^ satisfying (1), (2), (3)

and n is maximal among all such possible decompositions. Further-

more assume some A, has an idempotent e^O, e*. Without loss of

generality, we may assume i = 0. Now, by Theorem 1, A =An+Ai0

+A01+A00 (the Peirce decomposition of A with respect to e). In

particular A0 = (A0)n + (A0)10 + (A0)oi+(A0)<io and (A0)ijQAij. Thus

(-4 0)10 +(4 0)01 is contained in an ideal contained in the nucleus. Since

the sum of two ideals contained in the nucleus is again an ideal con-

tained in the nucleus, letting N' = N+(A0)io-\-(A0)oi, N' is contained

in an ideal contained in the nucleus. Thus A = (A 0)n -\-{A 0)oo

+ ^?=i Ai+N' (vector space direct sum) satisfying (1), (2), (3) and

this contradicts the maximality of n. We must assume that when n is

maximal in such a decomposition, the Ai have no idempotents except

0 and the e<. This finishes the proof of Theorem 2.

Theorem 3 (Albert). Every semisimple right alternative algebra A

over a field of characteristic not 2 is alternative.

This is Theorem 6 in [2]. Since ( — 1, 1) algebras are a special class

of right alternative algebras, Theorem 3 applies to ( — 1, 1) algebras.

Lemma 3. Let A be a ( — 1, 1) algebra over an algebraically closed field

of characteristic 7^ 2, 3. Suppose that every element of A is either inver-

tible or nilpotent. Then (A, A, A)t±0 implies A contains a trivial ideal

1 which is contained in the center of A such that IE(A, A, A).

Proof. Let R be the nil radical of A. Then A/R^O because A has

an identity. It is clear that A/R is semisimple, so A/R is alternative.

An alternative ( — 1, 1) algebra of characteristic not 3 is associative.

Thus A /I is a semisimple associative algebra. By the Wedderburn

structure theorems ([3, p. 28, Theorem 10] and [3, Theorem 11, p.

32]), A/R is a complete direct sum of matrix rings over division rings.

Since every element of A/R is invertible or nilpotent, A/R is a divi-

sion ring. Thus A/R has no nilpotent elements. Thus R contains all

the nilpotent elements of A.

If x is an element of A, let us define a linear transformation Tx on

A by aTx = ax. If x is an element of A, then Tx has an eigenvalue j3

and there exists a^O, aEA such that aTx=j3a. Since o(x— /31) = 0,

x— /SI is not invertible, and by assumption, must be nilpotent. Thus

xG^4 implies x = |31 +r where /31 is an element of the center of A and

r is an element of the radical R of A. Thus (A, A, A) = (R, R, R).
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Assume (A, A, A)7*0. Since (A, A, A) = (R, R, R)CR we have

(R, R, R)f>\R7*0. Since R is nil, R is nilpotent (see [4, Theorem 4]

for a proof). Thus there exists k such that Rk = 0. The powers of R

are defined inductively. R1=R, Rn= ^2"ll RiRn~i. Thus there exists

an i such that (R, R, R)nRi7*0, but (R, R, R)r\R(+l = 0. Then

I=(R, R, R)C\R' is the ideal required for the conclusion of this

lemma. To show / is an ideal, it is only necessary to show two things:

(1) that (A, A, A) is an ideal (see [5, Lemma 6]) and

(2), that powers of ideals are ideals.

To show that powers of ideals are ideals is easy and will not be done

here. Given that (R, R, R) is an ideal, RICR(R, R, R) r\RRkC(R, R, R)
fW+i = 0. IRC(R, R, R)Rr>RkRQ(R, R, R)f\Rk+1 = 0. Thus IR

= RI = 0 and this suffices to show / is in the center of A.

Theorem 4. If A is a ( — 1, 1) algebra over an algebraically closed

field of characteristic 7*2, 3 and A has no trivial A ideals in the center

of A, then A is associative.

Proof. By Theorem 2, A = ^Ai-\-N and each A{ satisfies the

hypothesis of Lemma 3. Suppose A, is not associative. Then by

Lemma 3, (Ai, Ai, Ai)7*0 implies there exists a trivial ideal /,- of Ai

such that /,• is in the center of A{ and IiE(A(, A{, A{). IiAj = AjIi = 0

if J7*i. N is contained in an ideal in the nucleus of A; therefore

(A, A, A)N=N(A, A, A)=0. Consequently IiN = NIi = 0. Thus I{
is a trivial ideal in the center of A. By hypothesis /, = 0. This is a

contradiction. We must have (Ai, Ai, Ai) =0 and Ai is associative for

all i. This means A is associative.

We now prove the main theorem.

Theorem 5. If A is a ( — 1, 1) algebra over a field of characteristic

7*2, 3 and the center of A contains no trivial A ideals, then A is associa-

tive.

Proof. Let K be the algebraic closure of F. Let K® FA be the

tensor product of K and A over F. Then K® fA is a ( — 1, 1) algebra

over K. K® pA may have nil ideals in its center. Notice that an alge-

bra has trivial ideals in its center if and only if it has nil ideals in its

center. Let ii be the maximal nil ideal in the center of K® pA. Let

Ii/Ii be the maximal nil ideal in the center of K ® fA/I\. Repeating

this process, we have a chain of ideals I\EJ2CIz • ■ - CIn where

Ii+i/I{ is the maximal nil ideal in the center of K ® fA/I{. The chain

must terminate in either one of two ways. K ® fA/I„ has no trivial

ideals in its center or I„ = K ® FA. In the former case, by Theorem 4

we know K®pA/In is associative. We can identify A with 1 ®A.
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Thus we can say that in either case, (A, A, A)EIn- However, Iif~\A

would be a trivial ideal in the center of A. Thus Ii(~\A =0 by assump-

tion. Let us proceed by induction. If Ir(~\A =0, then Ir+i(~\A would

be a trivial ideal in the center of A. Thus Ir+\(~\A = 0. Thus InC\A = 0.

Since (A, A, A)EIn, we have (A, A, A) = 0 and so A is associative.
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