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1. Introduction. Suppose throughout that /, a„ (« = 0, 1, • • • ) are

arbitrary complex numbers, that X>0 and p. is real, and that N is a

nonnegative integer such that XA^-t-ju^I. Let s_i = 0, sn= 2J"-0 av;

"    anxKn+"-1 "    5„xXn+"-1

«x.m(*) = 2, rA    ,    , '       *.»(*) = 2. •
n=N r(Xre + M) n=W r(X« + p)

Borel-type methods of summability are defined as follows: The

series X)o° an is said to be

(i) summable (P, X, p.) to /, if sx,„(x) is finite for all x^O and

Xe~xs\,flix)—^l as x—^=o ;

(i)' summable (P', X, ju) to J, if ax,„(x) is finite for all x^O and

/o e_Iax,^(x)Jx-r-^-i—*l as y—»cc ;

(ii) absolutely summable (P, X, ju), or summable | B, X, p\, to /, if

the series is summable (P, X, ^u) to / and e~xs\tllix) is of bounded varia-

tion on  [0,  oo);

(ii)' absolutely summable (P', X, ju), or summable | B', X, p\, to /,

if the series is summable (P, X, p.) to / and Jl e~xa\,„ix)dx is of bounded

variation on [0, <»).

Note that the methods (P, 1, 1) and (P', 1, 1) are respectively

equivalent to the standard Borel exponential and integral methods

P and B'.

The object of this paper is to establish the following absolute

summability analogue of a known inclusion theorem for ordinary

Borel-type summability ([2, Result I] and [l, Theorem 2]; see also

[4]):

Theorem. If a>X, the series 2^o° &n is summable \ B', a, /3| to I, and

ax,„(x) is finite for all x ^0, then the series is summable \ B', X, /x| to I.

It is known that [l, Lemma 4] ax,„(x) is finite for all x^O if and

only if Sx,„(x) is finite for all xg:0; and that [3, Theorem 17] a series

is summable \B', X, p\ to I if and only if it is summable \B, X, /x + 11
to /. Hence "P"' may be replaced by "P" in the theorem.

2. Preliminary results.

Lemma 1. If 8>0 and a series is summable \ B', a, /?| to I then it is
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summable \B', a, (8 + 81 to I.

This lemma is known [5].

Lemma 2. If a>X and /3/a^ju/X, then there is a function \p, con-

tinuous on (0, oo), such that

T(an + 0)       rx
(1) ) = n(t)dt        (n = N),

T(Xn + ii)      Jo

P°°    i i /r(an + 0)\
(2) t"\Mt)\dt = 0() )        (n = N),

Jo                                \r(\n+n)/

and, for any 8 > 0,

(3) u"^^(ua-x) = 0(e~ku(u1'2 + m-""5))        (0 < m < oo)

where p = l-(P-ix)/(a-\), <r = {i-aix/\, k = ((a-X)/X)(X/a)»««-x>.

Proof. Let h(s)=T(as+{l)/T(\s+iJ,). Then by Stirling's theorem

(see [2, p. 129]), there is a positive constant C such that

h(s) = e<« i°««-* iogx-a+x).j<a-)D.+/s-,,{c + 0(1/ | s | )}

when | s\ is large and Re s> —;u/X. Since A7> — ju/X, it follows from

the proof of Lemma 4 in [2], with o-0= — m/X, v = N, that there is a

function <£, continuous on (0, oo), such that

/> GO

t«-N<b(t)dt        (n = N);
a

*n_Ar | *(0 | <ft = 0(h(n))        (n^N);
o

r"<t>(t) = of>/x-1-"(«-X)) = o(r<"+»/(«-^)      as      <-*0+;

and

rw0(O ~ ire-*'1/(0f~X)r',+1/2("-X)      as     t -► «>,

where iC is a positive constant.

Putting \{/(t) =trN<p(t), we obtain the conclusions of Lemma 2.

3. Proof of the theorem. Let

y = a/X,        p = 1 — (/3 — /*)/(« — X),        <r = /? — 7/1,

* = (7 - l)77/(l-7),        5 = (7 ~ 1)Vt.

By Lemma 1, we may suppose, without loss in generality that jSS^ju,

i.e. that a=0.
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The main hypotheses of the theorem are that

/I   00

e-y\aaSiy)\dy< oo,
0

and that

(5) ax.mM is finite for all x ^ 0.

Let \J/ be the function specified in Lemma 2. Then, for 0<x< oo,

"     anxKn+i'-1    Yian-\-0)       ^   a„xXn+"-1    f °°
a\Ax) = X,-=  2^- I     tnipU)dt

»sT(an + 0) T(Xn + p)      n=N Ti<xn + 0) J 0

/• x                                      ™      O   (xl/yfl/a\an+fi-l

ta-f»i«tit)dt Y, —-
„t£      r(«n + /S)

tv-t»ia4>(t)aa.!i(xlln1i")dt,
0

the inversion of sum and integral being legitimate since, by (2), there

is a constant M such that

„=jv   r(aw + /3)   J o n=iv   T(Xre + /x)

which is finite by (5).

Substitute / = x~xya, dt=ax-yy"-xdy in the final integral in (6) to

get

/) CO

ya~ffaaAy)^(x~xya)dy       (0 < x < oo),

o

and hence

/> oo
e~~z | axlf.(x) | <ix

o

/i  00 v» 00I «a,/s(y) I y^dy I     er^x"-*-11 ̂(x-xy«) | dx.
o «7 o

Now substitute x=yv'r~1, dx = (y — l)yvy~2dv in the inner integral

on the right-hand side of (7) to get

/l oo

e~x I ax,f(x) I dx
0

/I  00 y»  00

I aajiiy) I iy I   ^•lr_V_^~1(yA)'<-*' | *((yA)«-x) | dv.
o «7 o
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Consequently, by (3), there is a constant Mi such that

/»   CO f%   COe'x | «x,p(x) \dx = Mi I    e-y \ aa,0(y) | 7(y)^y
0 ^ 0

where

/» CO

e-(vy-v+k)viv{fy/vyn + (y/»)-^}i,-'-i^.

0

Letf(v)=v-v + k, c = 71/»-t>. Then/(c) =/'(c)=0,/(t;)>0 when

i>>0, V7*c, and

/(»)/(» ~ c)2 ->/"(c)/2 = 7(7 - 1)^-72    as    v -* c.

Hence there are positive constants p, q, r such that

f(v) = p,       v-tf(v) = q   when0<!)<c/2    or   v > 3c/2;

andf(v) =rv(v — c)2 when c/2 <v<3c/2.

It follows that, for y>0,

/. 3c/2 /» 00
e-'<»-<02v-°-3i2dv + ;y1/2 I    e-pylvv-°-3l2dv

c/2 J 0

/• 3c/2 /» 00
vs~1dv + y_(r-5 I     e~qvvy~1vi~1dv

C/2 •/  0

/ c \ — 0—3/2 n c/2 /• 00

^2f —J y1'2 I      e-rtidt + y-° \     e-pH^'2dt

/3c\* ("°
-f y-o-5 f — 1 5—1 _f- -y-o-SWCT-l)   J      e-qtr-l+SKy-Vdl

= M2(l + y-° + y~"-s + y~"-y+l)

where M2 is a constant; i.e.

(9) 160=0(1)        (Uy<co),

and, since 5 = (7 —l)2/7<7 — 1,

(10) /(y) = OCy-'-rH)        (o < y < 1).

In virtue of (10), we have

l{y)a«.o(y) = l(y) X) ~r~—-
n=NT(an + P)

— o(y~"- T+i+a^+^-i) = 0(y1,<XAr+"_1)),

= 0(1)    (0 < y < 1).
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It follows from (4), (9) and (11) that

/I   CO

e-"\aa,f)(y)\l(y)dy< oo.
o

Consequently, by (8),

/»  00

e~x | o\.m(*) \dx < co,

o

i-e. Ym an is summable | B, X, p.].

Further, by the inclusion theorem for ordinary Borel-type summa-

bility referred to in §1, the \B, X, p\ sum of the series X)o° #« is the

same as its | P, a, /3| sum. This completes the proof.
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