ON ABSOLUTE BOREL-TYPE METHODS
OF SUMMABILITY

D. BORWEIN

1. Introduction. Suppose throughout that /, @, (#=0, 1, - - - ) are
arbitrary complex numbers, that A\>0 and u is real, and that Nisa
nonnegative integer such that AN+u=1. Let s_1=0, s,= 2" @y}

© a”x)\nﬂa—l 0 snx)\nﬁt—l
a (%) = —_— () = —_—
n() E’v T\ + ) el E’N T(\n + u)

Borel-type methods of summability are defined as follows: The
series Y o @, is said to be

(i) summable (B, N\, u) to I, if s),.(x) is finite for all x=0 and
Nezsy,,(x) >l as x—x;

(i)’ summable (B’, N\, p) to I, if ay,,(x) is finite for all x=0 and
S8 e2ay,  (x)dx+sy_1—1 as y—> = ;

(ii) absolutely summable (B, \, u), or summable IB, N, [.tl , to ], if
the series is summable (B, N, ) to ! and e~%s,, .(x) is of bounded varia-
tion on [0, ®);

(ii)’ absolutely summable (B’, \, 1), or summable IB’, A\ ul , to ],
if the series is summable (B, \, u) to Zand [} e~2a,, .(x)dx is of bounded
variation on [0, «).

Note that the methods (B, 1, 1) and (B, 1, 1) are respectively
equivalent to the standard Borel exponential and integral methods
B and B’.

The object of this paper is to establish the following absolute
summability analogue of a known inclusion theorem for ordinary
][30]rel-type summability ([2, Result I] and [1, Theorem 2]; see also

4]):

THEOREM. If a>\, the series D _q a, is summable |B', a, Bl tol, and
ax,u(x) s finite for all x =0, then the series is summable ]B’ " N u| to l.

It is known that [1, Lemma 4] ay,.(x) is finite for all x>0 if and
only if s),.(x) is finite for all x=0; and that [3, Theorem 17] a series
is summable IB’, A, ;ul to I if and only if it is summable IB, A\ p.+1|
to /. Hence “B’” may be replaced by “B” in the theorem.

2. Preliminary results.

LeMMA 1. If §>0 and a series is summable ]B', a, ﬂl to l then it is
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summable |B’, a, B+5| to l.
This lemma is known [5].

LEMMA 2. If a>N and B/a=u/N, then there is a function ¢, con-
tinuous on (0, ), such that

T'(an + B) ®
¢)) m = fo tvy(H)dt  (n = N),
® I'(an + B)
2 fo @] dt = 0<m> (n z N),

and, for any >0,
3) w @Y (ue) = O(e #(u''? + uw—-9%)) 0 <u< )
where p=1—B—p)/(@—N), o=B—ap/N, k=((a—N)/N)(N/a)/=D,

Proor. Let i(s) =T'(as+B)/T'(As+u). Then by Stirling’s theorem
(see [2, p. 129]), there is a positive constant C such that

h(s) = elelogar logk—a+x)as(a—)\)s+ﬂ—#{c + 0(1/| s| )}

when ]sl is large and Re s> —pu/N. Since N> —pu/], it follows from
the proof of Lemma 4 in [2], with ¢oy= —u/\, »=N, that there is a
function ¢, continuous on (0, «), such that

h(n) = fwt"—”¢(t)dt (n =z N);

f Cpn | o] dt = OGh(n) (0 N);

FNG(f) = O(mP—1-81@N) = Q(t—(+5)/ () as  {—0+;

and

1N g(1) ~ Ke e @V =ot1/2—2) as t— o,

where K is a positive constant.
Putting Y(t) =t¥¢(t), we obtain the conclusions of Lemma 2.

3. Proof of the theorem. Let
y=a/\, p=1—0B—=—w/(@—=2N), o=8—u
E=(y— Dy, 5= (y — 1)¥/v.

By Lemma 1, we may suppose, without loss in generality that 8Zvyu,
i.e. thate=0.
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The main hypotheses of the theorem are that

4 f €| aas(9) | dy < o,
0

and that

(5) a,u(x) is finite for all x = 0.

Let ¢ be the function specified in Lemma 2. Then, for 0<x< o,

. @@ Mtel T(an + B) ®  guaivtel

Au(®) = nEZN T(en+p8) TOn+u) awT(an+8)Jo

i ™y (t)dt

" © an(xll»ytl/a)an+l3—1
6) = x,.—1+(1—ﬂ)/7f ta=Blay(Hdt D
0 n=N P(an + '3)

)
= g1+ 0—B)/y f 1O=B) ey (f) ag p(x117811%) dt,
0

the inversion of sum and integral being legitimate since, by (2), there
is a constant M such that

© | a”| x)\n+p,—-1

o I ) I i l anl gAntu—1
—_— [4 )| dt < M _
n=v I'(an +B) J, W N TQ\n + u)

which is finite by (5).
Substitute ¢=x"y*, dt =axy>"'dy in the final integral in (6) to
get

o

(%) = ax f Y Paa s (xy)dy (0 <2z < ),
0

and hence

f e“[ axu(x) l dx
(7) ' © ©
Sfa f | Gas(y) | y-tdy f =21 Y(aye) | da.
0 1)

Now substitute x =yv7~!, dx = (y —1)yv"~2dv in the inner integral
on the right-hand side of (7) to get

fme“l (%) I dx

0

Sa(y—1) f i | Gas(9) | dy f eﬂ6"“"7_5'_"_1(3’/1))”“"") [ ¥((9/v)=) | do.
0 0
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Consequently, by (3), there is a constant M; such that

®) [ el o x = 011 [ v as) | 16020y

where

Iy) = fuoe_(w—v+-k)y/u{ (y/)'2 + (y /v)—a—a}v—y—ldv'

Let f(v) =v"—v+k, ¢c=vY3=7. Then f(c) =f'(c) =0, f(v) >0 when
>0, v#¢, and

f@)/ == f"()/2 =v(y — 1)e%/2 as v—c.
Hence there are positive constants p, ¢, r such that
f@) = p, vf(v) Z ¢ when0<v<c¢/2 or v> 3c¢/2;

and f(v) Zrv(v—c¢)? when ¢/2 <v<3c/2.
It follows that, for y>0,

3c/2 ©

e (v—e)2y—a—3/2y + yl/Zf e—Pulvy—o—3/2y

0

16) sy [

c/2

3c/2 ©
+ yot f vy + yob f e lyi=1dy
c/2 0

c —o—3/2 cl/2 0
) (__) yl/2f etdt + y—o'f e—Ptio—1/24y
2 0 0

& [
+ y—a—a (_3_6) 5~ + y—a——a-y/(y—l)f e—ati—1+8/ (v=1) gy
2 0

é M2(1 + y—“ + y—d—ﬁ + y—a_7+1)

where M, is a constant; i.e.

I\

9 I(y) =0Q1) 1=y < =),
and, since 6 =(y—1)?/y<y—1,
(10) I(y) = O(y—*) (0<y<1).

In virtue of (10), we have

I(y)aas(y) = I(y) n=ZN T(an + B)

= Q(y—o-rtitaN+6-1) = Q(y7ON+u—D)

=0(1) O0O<y<1).

am+B—

(11)
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It follows from (4), (9) and (11) that
[ el esn | 1000y < .
Consequently, by (8),
fowe“'l a,u(x) ] dx < o,

i.e. Yo a,is summable IB, N, ul.

Further, by the inclusion theorem for ordinary Borel-type summa-
bility referred to in §1, the ]B, A, u| sum of the series ZS‘ @, is the
same as its IB, a, BI sum. This completes the proof.
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