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This work is devoted to the study of certain cardinality modifica-

tions of paracompactness and compactness in the setting of linearly

ordered spaces. Some of the concepts treated here have previously

been studied by Aquaro [l]1, Gulden [4], Kennison [5], Mansfield

[6], Morita [7], and Poppe [9]. On the other hand, the concept of

m-boundedness, introduced in §2, is new.

Our main results (Theorems 1 and 3) establish the equivalence for

linearly ordered spaces of a number of cardinality modifications of,

in the first case, paracompactness, and, in the second, compactness.

In each instance, this is accomplished by means of a characterization

in terms of conditions imposed on the gaps of the space. In regard to

Theorem 1, in which the concept of Q-gap introduced by Gillman

and Henriksen [3 ] plays a crucial role, we call attention to the equiva-

lence of m-paracompactness and the apparently much stronger con-

dition m-full normality in the setting of linearly ordered spaces. It is

also of interest to note that Theorem 3 shows the equivalence of

m-compactness and m-boundedness, again in the setting of linearly

ordered spaces. Novak [8] has shown this latter equivalence is not

in general true for m countable, but the authors are not aware of an

m-compact space which is not m-bounded for rrt larger than countable.

1. In this section, we note the equivalence, in the setting of linearly

ordered spaces, of a varied collection of cardinality modifications of

paracompactness. Unless otherwise indicated, tn will denote an infi-

nite cardinal.

Definition 1. The space A is said to be m-paracompact (m-meta-

compact, strongly m-paracompact) if and only if each open covering

of A by no more than rrt sets admits as a refinement a locally finite

(point finite, star finite) open covering.

Definition 2 (Mansfield [6]). (Here, let rrt be any cardinal ^2.)

Let a and (B be collections of subsets of a set A. (B> is called an m-star

(almost m-star) refinement of Q, if and only if (B refines ffi and when-

ever ailCffi with I £011 ̂m and C\'M7*0 (MQX with \m\ ^rrt and
MQSt(x, 03) for some xGA) there is an AE& with \Jm.CA (MQA).

The space A is m-fully normal (almost m-fully normal) if and only if

to each open covering of A there corresponds an open covering which

m-star (almost m-star) refines it.
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1 Numbers in brackets refer to the list of references at the end of this paper.
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It is clear that for any m^2, almost m-fully normality is implied

by m-full normality; also, if n^m then (almost) n-full normality im-

plies (almost) m-full normality. Mansfield's result that every linearly

ordered space is No-fully normal will be seen to be a corollary of our

Theorem 1. On the other hand, the proofs of the implications (ix)

=Ki), (ix)=Kh) °f Theorem 1 are based upon Mansfield's proof of

the result cited. In particular, we make use of the following lemma

[6, Lemma 3.1].

Lemma 1. Let X be a linearly ordered space (that is, a linearly ordered

set provided with its interval topology) with the property that every strictly

increasing (decreasing) sequence in X indexed by the positive integers,

with their usual order, converges to a point of X. Then for each open

covering 11 of X there is a point u* EX such that {xGX|x>m*}

CSt(tt*, it) ({xGX|x<M*}cSt(w*, 11)).

Morita [7, Theorem 4.2] has shown that for any infinite cardinal

m, almost m-full normality implies m-paracompactness. The same

argument, suitably modified, may be used to demonstrate that strong

m-paracompactness is implied by the property given as (ii) in Theo-

rem 1 below. This property itself came to light as a result of an obser-

vation of Aquaro.

Definition 3 (Aquaro [l]). Let ft and (B be collections of subsets

of a set X. 03 is said to be an m-quasi-refinement of ft if and only if

for any MCI with \M\ ^m, if MCP for someBE& then there is an

AE& such that MC.A.
Aquaro observed that a normal space is almost m-fully normal if

and only if to each open covering of the space there corresponds a

locally finite open covering which m-quasi-refines it.

The concept of Q-gap, introduced by Gillman and Henriksen, is

that by which the cardinality modifications of paracompactness

under discussion are ultimately related.

Definition 4 (Gillman and Henriksen [3]). Let X be a linearly

ordered set and let X+ denote the order completion of X. Let wa and

up be regular initial ordinals and let u* denote a>/j with the reverse

order. A gap u of X (i.e., an element of X+\X) is an wa-limit of X (an

up*-limit of X) if the set of all elements of X which precede u (which

follow u) is cofinal (coinitial) with w„ (with oo*). The unique ordinal

for which u is an wa-limit of X (an w^*-limit of X) will be denoted by

(o«(U) (by W0(U)). (By S is cofinal with coa we mean 5 has an unbounded

subset which is well ordered of order type coa.)

A gap u of X is called a Q-gap from the left (right) if and only if there

is a regular initial ordinal co„ and an increasing (decreasing) sequence
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{x<31/?<«„} of points of A+ such that u=limp<aaXp and if \<wa is

any nonzero limit ordinal then lim^<x X/j is a gap of X. (Thus any gap

which is the limit of an increasing (decreasing) sequence of points of

A+ indexed by the positive integers is a Q-gap from the left (right).)

It was proved in [3] that a linearly ordered space is paracompact

if and only if each of its gaps is a Q-gap from both right and left (with

the obvious modification for the possible endgaps of the space). In a

recent work [2], Fedorchuk has shown that in linearly ordered spaces,

strong paracompactness, paracompactness, and metacompactness are

mutually equivalent.

The following lemma (9.4 of [3]) is of use in the proof of Theorem 1.

Lemma 2. Let J = (p, v) be an interval of a linearly ordered space X,

where v is a gap that is not a Q-gap from the left. Let a be the ordinal for

which v is an u)a-limit. Let It be an open covering of J that does not cover

the gap v. Then 11 has a subfamily of power | coa \ with nonvoid inter-

section.

Theorem 1. Let Xbea linearly ordered space, and let m be an infinite

cardinal. The following are then equivalent:

(i) A is m-fully normal.
(ii) To each open covering It of X there corresponds a star-finite open

covering V which is an m-quasi-refinement of It.

(iii) A is almost m-fully normal.

(iv) A is strongly-m-paracompact.

(v) A is m-paracompact.

(vi) A is m-metacompact.

(vii) Each open covering 11 of X with \ 111 5= rrt admits as a refinement

an open covering *U which is point countable (that is, no point of X be-

longs to more than countably many members of V).

(viii) For each open covering It of X with $$oS= | IXj ^m there is an

open covering V which refines 11 such that each point of X belongs to less

than   11   members of V.

(ix) Each gap u of X satisfying \ oiaM | gm (respectively, [ w^(U> | ^ tn)

is a Q-gap from the left (respectively, right).

Proof. The scheme is (i)=*(iii)=>(v), (ii)=Kiv)=Kv)=Kvi)=>(vii)

=>(ix), (vi)=»(viii)=Kix), (ix)=>(i), (ix)=>(ii). Of these implications

all save (vii)=>(ix), (viii)=>(ix), (ix)=>(i), and (ix)=>(ii) hold in arbi-

trary spaces.

The implications (vii)=>(ix) and (viii)=>(ix) follow immediately

from Lemma 2.

The proofs of (ix)=>(i) and (ix)=>(ii) are quite similar. We sketch

the latter. We shall say that a gap u of A is covered by the interval
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(a, b)={xEX\a<x<b) (where a, &GX+) if and only if, in X+,

a<u<b or u is an endgap of X and coincides with either a or b.

Assume (ix) and let 11 be an open covering of X. We may suppose

that It is a covering of X by intervals. The set P+ of gaps of X not

covered by any member of 11 is a closed subset of X+, so that X+\P+

can be expressed as the union, UaSr K-t, of pairwise disjoint intervals,

open in X+, whose endpoints are either endpoints of X+ or gaps of X

not covered by any member of 11. For each U=(a, o)GH, let [/+

= {zGX+| a<z<b\. It will suffice to show that for each aEY, there

is a star finite open covering V„ of P+ which is an m-quasi-refinement

of 11+= { P+HP+1 UE^}, for then, if Va={V+r\X\ Va+EV+} and
D = U {UalaGr}, V will be a star finite open covering of X which

is an m-quasi-refinement of 11.

P« is a linearly ordered space with no interior gaps. Thus we dis-

tinguish the following cases:

I. P+ = (u, v) where u and v are gaps of X which are Q-gaps from

the right and left, respectively, or P« = [u, v) where u is an endpoint

of X+ which is covered by a member of IX and v is a Q-gap from the

left, or P+ = (u, v] where u is a Q-gap from the right and v is an end-

point of X+ covered by some member of 11. In each of these instances,

application of the results of Gillman and Henriksen, and Fedorchuk

cited above shows that P+ is strongly paracompact. Thus, the open

covering 1l+ of P+ admits as a refinement a star finite open covering

D+. Certainly "0+ is an m-quasi-refinement of 1l+.

II. P+ = (u, v) where u and v are gaps of X, neither of which is

covered by any member of 11, such that u is coinitial with no subset

of X of cardinality gm, and v is cofinal with no subset of X of cardi-

nality ^m. Since P+ has no interior gaps, and since m is infinite,

Lemma 1 guarantees the existence of points u*, v*EK% such

that UL={yEKt\y<u*}cSt(u*,1L+) and UR= {zEKt\v*<z}

CSt(z/*, 1l+). We may assume that u*<v*. The subspace [u*, v*] of

Ka, having no gaps, is compact. Thus there is a finite collection

^£11+ which covers [u*, *>*]JLet =0+ =1l+0W { UL, UR}. Then D+

is a finite (hence star finite) open covering of P+. To establish that

*0+ is an m-quasi-refinement of 1l+ it is clearly sufficient to show that

if MQK„, | M\ ^m, and M is contained in either of Ul or Ur then

there is a [/Gil such that MQ [/+P1P+. Suppose MQ Ur. The ele-

ment 2 = sup M of X+ is cofinal with a subset of X of cardinality ^m.

Thus v*<z<v so that zE$t(v*, 1l+). There is a PGH such that v*,

ZE U+f~\K+. But the members of 11 are intervals and for each yE M,

v*<y^z, so that MQ U+C\K„. (We remark that the analogous argu-

ment for the implication (ix)=>(i) follows that of Mansfield [6] in

the proof of case I of Lemma 3.5.)
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III. Ka = (u, v) where u is as in II and v is a Q-gap from the left

(or with the roles of u and v reversed). Choose u* as above. The sub-

space [u*, v) is paracompact, hence strongly paracompact.

IV. Aj = (u, v] where u is as in II and v is a covered endpoint of

X+ (or with the roles of u and v reversed). Choose u* as above. The

subspace [u*, v] is compact.

2. In this section we turn our attention from cardinality modifica-

tions of paracompactness to similar modifications of compactness.

The main result (Theorem 3) shows the equivalence of these com-

pactness modifications in linearly ordered spaces.

Definition 5. Let A be a topological space, and let m be an infinite

cardinal. A is called m-bounded if and only if for each ^4CA with

| A| gm there is a compact set CCA such that iCC. A is called

m-compact if and only if each open cover of X, of cardinality at most

rrt, has a finite subcover. A is called m-quasicompact [9] if and only

if each open cover 11 of A by cozero sets, with the cardinality of It

at most rrt, has a finite subcover. A is called m-pseudocompact [5] if

and only if each map (continuous function) /: A—>Rm has a compact

range, where Rm denotes the Cartesian product of the reals rrt times.

It is clear that every m-compact space is both m-pseudocompact

and m-quasicompact. It is also known that a completely regular,

Hausdorff space is m-quasicompact if and only if it is m-pseudo-

compact [5, Theorem 2.2].

Lemma 3. Every m-bounded space is m-compact.

Proof. Suppose A is an m-bounded space which is not m-compact.

Then there is an open cover 11= { C/a|Q!GA} with |A| ^nt having no

finite subcover. Let AF denote the collection of finite subsets of A.

For each yEA-F, choose xyEX\\j{Ua\aEy}- Then, since |A^l

^m, A = {xy\yEA-F} is a subset of A of cardinality at most m. Since

A is m-bounded, there is a compact set CCX such that A^C.

Since 11 covers C there is a finite set 7oGAF such that

CC\J{ua\aEyo}.

Hence x7oEA. This is clearly impossible.

Definition 6. Let A be a topological space, let xGA, and let rrt

be an infinite cardinal, x is called an m-point if, for each collection cu

of open subsets of A satisfying 1111 ̂ m and xGDIt, there is an open

set FCA such that xG FCflll.

Theorem 2. Let Y be a compact Tx space, and let AC Y. If each

point of Y\X is an m-point of Y, then X is m-bounded.
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Proof. Suppose A= {aa|aGAJCX and |A| gra. Let yE Y\X.

Since F is Pi, for each aGA there is an open set Ua in F such that

yE Ua and xa(£ Ua. Since y is an m-point there is an open set U„ of

Fsuch that yEUyQn{ Ua\aEA}. Let P = U { Uy\yE Y\X}. Then
U is open in F and Y\XQU. Thus Y\U = X\U, and since Y\U is

closed in F, it is compact. Hence X\ U is compact in X, and A QX\ U.

Thus X is m-bounded.

Theorem 3. Let X be a linearly ordered space, and let m be an infinite

cardinal. The following are then equivalent:

(a) X is m-bounded.

(b) X is m-compact.

(c) X is m-pseudocompact.

(d) X is m-quasicompact.

(e) For each gap u of X, | ua(,) | >m and |«/)(«) | >m.

Proof. We have already seen that (a)=>(b)=>(c). Since every

linearly ordered space is normal and Hausdorff (c)<^=>(d).

That (e)=>(a) is a consequence of Theorem 2, since, if each gap u

of X satisfies |wa(u)| > m and | a)p(U)\ >m, then u is an m-point in X+.

Since X+ is compact and Hausdorff, X is m-bounded. Thus it is

sufficient to show (d)=Ke).

Suppose u is a gap of X and |wa(u)| =m. Then there is a strictly

increasing sequence {xT|Y<wa(U)} in X that is cofinal in {xGX|x<w}.

Since X is normal, for each y <coa(.u) there is a map/7: X—>P such that

fy(x) = 1 for x^xy,fy(x) =0 for xstxy+i, and Q^fyf= 1. Since u is a gap

of X there is a map/: X—>R such that/(x) = 1 for x>u and f(x) =0

for x<u.

For each 7<co«(„) let Uy= {xGX|/7(x)^0}, and let [/

= {xGX|/(x)^0}. Then 11= { [/}U { [/T| 7<«„<„)} is an open cover

of X by cozero sets and 1111 ̂  m. Clearly 11 has no finite subcover,

and hence X is not m-quasicompact.

The following lemma leads to an interesting corollary of Theorem 3.

Lemma 4. Let m be an infinite cardinal, and let {Xa|o:GA} be a

collection of m-bounded topological spaces. Then n(X„|aGA) is

m-bounded.

Proof. Let X=n(Xa|aGA) and AQX, \A\ ^m. Then \ira[A]\
^m for each aGA, where ira: X—>Xa is the projection function. Since

Xa is m-bounded, there is a compact set C«QXa such that ^,,[^4]

CZCa. Hence ^4^n(Ca|«GA)CX, and n(Ca|ctGA) is compact.
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Corollary. Let m be an infinite cardinal, let {Aa|aGA} be a

collection of linearly ordered spaces, and let A=II(Aa|aGA). The

following are then equivalent:

(a) A is m-bounded.

(b) A is m-compact.

(c) A is m-pseudocompact.

(d) X is m-quasicompact.

(e) Xa is m-bounded for each a£A.

Proof. As before (a)=>(b)=>(c), and (c)<=*(d) since A is completely

regular and Hausdorff. Also (c)=>(e), since any continuous image of

an m-pseudocompact space is m-pseudocompact. That (e)=*(a) follows

from Lemma 4.
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