LINEARLY ORDERED TOPOLOGICAL SPACES
S. L. GULDEN, W. M. FLEISCHMAN AND J. H. WESTON

This work is devoted to the study of certain cardinality modifica-
tions of paracompactness and compactness in the setting of linearly
ordered spaces. Some of the concepts treated here have previously
been studied by Aquaro [1], Gulden [4], Kennison [5], Mansfield
[6], Morita [7], and Poppe [9]. On the other hand, the concept of
m-boundedness, introduced in §2, is new.

Our main results (Theorems 1 and 3) establish the equivalence for
linearly ordered spaces of a number of cardinality modifications of,
in the first case, paracompactness, and, in the second, compactness.
In each instance, this is accomplished by means of a characterization
in terms of conditions imposed on the gaps of the space. In regard to
Theorem 1, in which the concept of Q-gap introduced by Gillman
and Henriksen [3] plays a crucial role, we call attention to the equiva-
lence of m-paracompactness and the apparently much stronger con-
dition m-full normality in the setting of linearly ordered spaces. It is
also of interest to note that Theorem 3 shows the equivalence of
m-compactness and m-boundedness, again in the setting of linearly
ordered spaces. Novak [8] has shown this latter equivalence is not
in general true for m countable, but the authors are not aware of an
m-compact space which is not m-bounded for m larger than countable.

1. In this section, we note the equivalence, in the setting of linearly
ordered spaces, of a varied collection of cardinality modifications of
paracompactness. Unless otherwise indicated, m will denote an infi-
nite cardinal.

DerINITION 1. The space X is said to be m-paracompact (m-meta-
compact, strongly m-paracompact) if and only if each open covering
of X by no more than m sets admits as a refinement a locally finite
(point finite, star finite) open covering.

DEFINITION 2 (MANSFIELD [6]). (Here, let m be any cardinal =2.)
Let @ and ® be collections of subsets of a set X. & is called an m-star
(almost m-star) refinement of @ if and only if ® refines @ and when-
ever MC® with Iiml =m and M= F (MCX with ]Ml =m and
MCSt(x, ®) for some x&EX) thereisan A E @ with UMC A4 (MCA4).
The space X is m-fully normal (almost m-fully normal) if and only if
to each open covering of X there corresponds an open covering which
m-star (almost m-star) refines it.
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It is clear that for any m =2, almost m-fully normality is implied
by m-full normality; also, if n=m then (almost) n-full normality im-
plies (almost) m-full normality. Mansfield’s result that every linearly
ordered space is No-fully normal will be seen to be a corollary of our
Theorem 1. On the other hand, the proofs of the implications (ix)
=(i), (ix)=(ii) of Theorem 1 are based upon Mansfield’s proof of
the result cited. In particular, we make use of the following lemma
[6, Lemma 3.1].

LeMMA 1. Let X be a linearly ordered space (that is, a linearly ordered
set provided with its interval topology) with the property that every strictly
increasing (decreasing) sequence in X indexed by the positive integers,
with their usual order, converges to a point of X. Then for each open
covering W of X there is a point u* &X such that {x€X|x>u*}
CSt(u*, U) (JxCX|x<u*}CSt(u*, w)).

Morita [7, Theorem 4.2] has shown that for any infinite cardinal
m, almost m-full normality implies m-paracompactness. The same
argument, suitably modified, may be used to demonstrate that strong
m-paracompactness is implied by the property given as (ii) in Theo-
rem 1 below. This property itself came to light as a result of an obser-
vation of Aquaro.

DEFINITION 3 (AQUARO [1]). Let @ and ® be collections of subsets
of a set X. ® is said to be an m-quasi-refinement of @ if and only if
for any MC X with | M| <m, if MC B for some BE ® then there isan
AE @ such that M S A4.

Aquaro observed that a normal space is almost m-fully normal if
and only if to each open covering of the space there corresponds a
locally finite open covering which m-quasi-refines it.

The concept of Q-gap, introduced by Gillman and Henriksen, is
that by which the cardinality modifications of paracompactness
under discussion are ultimately related.

DEFINITION 4 (GILLMAN AND HENRIKSEN [3]). Let X be a linearly
ordered set and let X+ denote the order completion of X. Let w, and
wp be regular initial ordinals and let wg* denote wg with the reverse
order. A gap u of X (i.e., an element of X*\X) is an wa-limit of X (an
ws*-limit of X) if the set of all elements of X which precede % (which
follow #) is cofinal (coinitial) with w, (with wg*). The unique ordinal
for which # is an w.-limit of X (an wg*-limit of X) will be denoted by
Watwy (bY Wsay). (By S is cofinal with w. we mean S has an unbounded
subset which is well ordered of order type w..)

A gap u of X is called a Q-gap from the left (right) if and only if there
is a regular initial ordinal w. and an increasing (decreasing) sequence
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{xglﬁ<wa} of points of X* such that % =limgc,, ¥ and if N <w, is
any nonzero limit ordinal then limg« x5 is a gap of X. (Thus any gap
which is the limit of an increasing (decreasing) sequence of points of
X* indexed by the positive integers is a Q-gap from the left (right).)

It was proved in [3] that a linearly ordered space is paracompact
if and only if each of its gaps is a Q-gap from both right and left (with
the obvious modification for the possible endgaps of the space). In a
recent work [2], Fedorchuk has shown that in linearly ordered spaces,
strong paracompactness, paracompactness, and metacompactness are
mutually equivalent.

The following lemma (9.4 of [3]) is of use in the proof of Theorem 1.

LEMMA 2. Let J=(p, v) be an interval of a linearly ordered space X,
where v 1s a gap that is not a Q-gap from the left. Let a be the ordinal for
which v is an w.-limit. Let U be an open covering of J that does not cover
the gap v. Then U has a subfamily of power lwal with nonvoid inter-
section.

THEOREM 1. Let X be a linearly ordered space, and let m be an infinite
cardinal. The following are then equivalent:

(i) X is m-fully normal.

(i1) To each open covering U of X there corresponds a star-finite open
covering U which is an m-quasi-refinement of U.

(ili) X s almost m-fully normal.

(iv) X is strongly-m-paracompact.

(v) X is m-paracompact.

(vi) X is m-metacompact.

(vii) Each open covering U of X with | ‘ul =m admits as a refinement
an open covering O which is point countable (that is, no point of X be-
longs to more than countably many members of V).

(viii) For each open covering U of X with WNo= ] ‘U.| =m there is an
open covering O which refines U such that each point of X belongs to less
than || members of V.

(ix) Each gap u of X satisfying |wa| Sm (respectively, |wseuy| < m)
is a Q-gap from the left (respectively, right).

Proor. The scheme is (i)=(iii)=(v), (i)=({v)=(v)=(vi)=(vii)
=(ix), (vi)=(viii)=(ix), (ix)=(), (ix)=(i). Of these implications
all save (vii)=(ix), (viii)=>(ix), (ix)=(), and (ix)=>(ii) hold in arbi-
trary spaces.

The implications (vii)=(ix) and (viii)=(ix) follow immediately
from Lemma 2.

The proofs of (ix)=(i) and (ix)=(ii) are quite similar. We sketch
the latter. We shall say that a gap # of X is covered by the interval
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(a, b)={xEX|a<x<b} (where a, b&EX+) if and only if, in X+,
a<u<b or u is an endgap of X and coincides with either a or b.

Assume (ix) and let U be an open covering of X. We may suppose
that U is a covering of X by intervals. The set F* of gaps of X not
covered by any member of U is a closed subset of X, so that X+\ F*
can be expressed as the union, User K, of pairwise disjoint intervals,
open in X+, whose endpoints are either endpoints of X+ or gaps of X
not covered by any member of U. For each U=(a, b)EU, let U*
= {2E€X+|a<z<b}. It will suffice to show that for each a €T, there
is a star finite open covering U} of K} which is an m-quasi-refinement
of U = { UtNKI| U€u}, for then, if Vo= { V+NX| V.r€U+} and
V=U{V.]a&T}, U will be a star finite open covering of X which
is an m-quasi-refinement of U.

K} is a linearly ordered space with no interior gaps. Thus we dis-
tinguish the following cases:

I. K} =(u, v) where u and v are gaps of X which are Q-gaps from
the right and left, respectively, or K = [«, v) where % is an endpoint
of X+ which is covered by a member of U and v is a Q-gap from the
left, or K} = (u, v] where « is a Q-gap from the right and v is an end-
point of X+ covered by some member of U. In each of these instances,
application of the results of Gillman and Henriksen, and Fedorchuk
cited above shows that K is strongly paracompact. Thus, the open
covering U} of K} admits as a refinement a star finite open covering
UF. Certainly UF is an m-quasi-refinement of u}.

II. K} =(u, v) where » and v are gaps of X, neither of which is
covered by any member of U, such that # is coinitial with no subset
of X of cardinality <m, and v is cofinal with no subset of X of cardi-
nality <m. Since K} has no interior gaps, and since m is infinite,
Lemma 1 guarantees the existence of points u*, v*€K} such
that Up={yEKI|y<u*}CSt*u}) and Uz={zEK}|v*<z}
CSt(v*, UF). We may assume that #* <v*. The subspace [#*, v*] of
K}, having no gaps, is compact. Thus there is a finite collection
at,Cu}t which covers [u*, v*]Let U} =uf\J{ Uy, Uzr}. Then 0
is a finite (hence star finite) open covering of K}. To establish that
U7 is an m-quasi-refinement of U} it is clearly sufficient to show that
if MCKJ, | M| <m, and M is contained in either of Uz or Ug then
there is a UEQU such that MC UtNK}. Suppose MC Ug. The ele-
ment z=sup M of X is cofinal with a subset of X of cardinality <m.
Thus v*<z<v so that z&St(v*, U}). Thereis a UEU such that v*,
ZE U+NK}. But the members of U are intervals and for each y& M,
v*<y =3, so that MC U*MKJ. (We remark that the analogous argu-
ment for the implication (ix)=>(i) follows that of Mansfield [6] in
the proof of case I of Lemma 3.5.)
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I1I. K} = (u, v) where « is as in II and v is a Q-gap from the left
(or with the roles of % and v reversed). Choose #* as above. The sub-
space [u*, 9) is paracompact, hence strongly paracompact.

IV. K} =(u, v] where « is as in II and v is a covered endpoint of
X+ (or with the roles of # and v reversed). Choose #* as above. The
subspace [#*, v] is compact.

2. In this section we turn our attention from cardinality modifica-
tions of paracompactness to similar modifications of compactness.
The main result (Theorem 3) shows the equivalence of these com-
pactness modifications in linearly ordered spaces.

DEFINITION 5. Let X be a topological space, and let m be an infinite
cardinal. X is called m-bounded if and only if for each ACX with
| A| <m there is a compact set CCX such that ACC. X is called
m-compact if and only if each open cover of X, of cardinality at most
m, has a finite subcover. X is called m-quasicompact [9] if and only
if each open cover U of X by cozero sets, with the cardinality of U
at most m, has a finite subcover. X is called m-pseudocompact [5] if
and only if each map (continuous function) f: X—R™ has a compact
range, where R™ denotes the Cartesian product of the reals m times.

It is clear that every m-compact space is both m-pseudocompact
and m-quasicompact. It is also known that a completely regular,
Hausdorff space is m-quasicompact if and only if it is m-pseudo-
compact [5, Theorem 2.2].

LeMMA 3. Every m-bounded space is m-compact.

Proor. Suppose X is an m-bounded space which is not m-compact.
Then there is an open cover U= { U,|a€A} with |A| <m having no
finite subcover. Let AF denote the collection of finite subsets of A.

For each y&EAF, choose x,&EX\U { U,,,] alty } Then, since IAF|
<m, A ={x,|vEAF} is a subset of X of cardinality at most m. Since
X is m-bounded, there is a compact set CC X such that A CC.

Since U covers C there is a finite set vo&AF such that

C CU{U.| a € vo}.

Hence x,,§ A. This is clearly impossible.

DEFINITION 6. Let X be a topological space, let x€X, and let m
be an infinite cardinal. x is called an m-point if, for each collection U
of open subsets of X satisfying || <m and xENU, there is an open
set VC X such that xEVCNU.

THEOREM 2. Let Y be a compact Ty space, and let XC Y. If each
point of Y\X is an m-point of Y, then X is m-bounded.
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PrOOF. Suppose 4 = {a.]aEA}CX and |A| Sm. Let yE V\X.
Since Y is T4, for each a&A there is an open set U, in ¥ such that
yE U, and %6 U,. Since y is an m-point there is an open set U, of
Y such that yE U,CN{U.|a€A}. Let U=U{U,|yE Y\X}. Then
Uis open in ¥ and Y\XCU. Thus Y\U=X\U, and since Y\U is
closed in Y, it is compact. Hence X\ U is compactin X, and 4 S X\ U.
Thus X is m-bounded.

THEOREM 3. Let X be a linearly ordered space, and let m be an infinite
cardinal. The following are then equivalent:

(a) X s m-bounded.

(b) X is m-compact.

(c) X zs m-pseudocompact.

(d) X 7s m-quasicompact.

(e) For each gap u of X, |wawy| >m and |wpe| >m.

ProorF. We have already seen that (a)=(b)=(c). Since every
linearly ordered space is normal and Hausdorff (c)&(d).

That (e)=(a) is a consequence of Theorem 2, since, if each gap #
of X satisfies |wa(u)| >m and ’wg(u)l >m, then % is an m-point in X+.
Since X* is compact and Hausdorff, X is m-bounded. Thus it is
sufficient to show (d)=(e).

Suppose # is a gap of X and |wa(u)] < m. Then there is a strictly
increasing sequence {%,|Y <waqw | in X thatis cofinal in {rEX|x<u}.
Since X is normal, for each ¥ <we,y there is a map fy: X —R such that
fy(x) =1 for x £x,, fy(x) =0 for x =x,41, and 0=f, <1. Since u is a gap
of X there is a map f: X—R such that f(x) =1 for x>u and f(x) =0
for x <u.

For each vY<waw let U,= {xEX]f,(x);éO}, and let U
= {xEX|f(x)#0}. Then U= {U}J{U,|v<waw} is an open cover
of X by cozero sets and |°lL| < m. Clearly U has no finite subcover,
and hence X is not m-quasicompact.

The following lemma leads to an interesting corollary of Theorem 3.

LeMMA 4. Let m be an infinite cardinal, and let {X.|aEA} be a
collection of wm-bounded topological spaces. Then II(X a|a€A) 1s
m-bounded.

ProOF. Let X =II(X,|aEA) and ACX, | 4| £m. Then |r.[4]]
<m for each « €A, where m,: X —X, is the projection function. Since
X . is m-bounded, there is a compact set CoC X, such that m.[4]
C C,. Hence AQH(C,,IaEA)QX, and H(Ca|a€A) is compact.
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COROLLARY. Let m be an infinite cardinal, let {X.|aCA} be a
collection of linearly ordered spaces, and let X =II(X a|a€A). The
following are then equivalent:

(a) X is m-bounded.

(b) X is m-compact.

(c) X is m-pseudocompact.

(d) X is m-quasicompact.

(e) Xqois m-bounded for each aEA.

PRrOOF. As before (a)=(b)=>(c), and (c)<(d) since X is completely
regular and Hausdorff. Also (c)=(e), since any continuous image of
an m-pseudocompact space is m-pseudocompact. That (e)=(a) follows
from Lemma 4.
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