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Let (K, 3) be a (commutative) topological field. (We do not require

that multiplicative inversion be continuous, i.e. 3 is a ring topology.

See [l, p. 274] for the definition of the latter.) Throughout this paper,

11 will denote a basic system of neighborhoods of zero for 3. Let P(X)

be a polynomial in K[X] of degree »sS2, and let S= {P(a)\a£EK}.

We will be concerned with suitably defining a multiple-valued inverse

P*~ for P on S, and then considering questions of continuity and uni-

form continuity for P*". We will be particularly interested in poly-

nomials which are monic and of degree 2, or of the form P(X) =Xn.

For P(X) =1", P*~ will be called the nth root function.

We will show that the uniform continuity of P*~ is sometimes

related to 3 being type V. Indeed, if deg P = 2 and char Kj^l, then

P*~ is uniformly continuous if and only if 3 is type V. The hypothesis

that char K^2 cannot be eliminated, as will be demonstrated by

exhibiting nontrivial topological fields of characteristic 2 which are not

type V, but in which the (single-valued) square root function is uni-

formly continuous. In greater generality, for each prime p, we will

exhibit topological fields of characteristic p which are not of type V,

but in which the pth root function is uniformly continuous.

Finally, we will show that inverses of polynomials need not be

continuous at all. Specifically, we will exhibit topological fields of

arbitrary characteristic other than 2 in which the square root function

is discontinuous.2

1. Inverses for polynomials. Let 3Z={f\ FQK, F finite}. For

PEK[X], we define P*- from 5 into X by F*-(y) = {aEK\P(a)=y}

for all yG5. In order to talk about continuity for P*", as in [l, Ex-

ercise 5, p. 206], we will consider a natural uniform structure on 3C.

ForeachZ7in'U,letFbethesubsetof3CXXdefinedbyF= {(Pi,P2)| for

all sGF,' there exists &£P/ such that a — b(EU, for (i, j) = (1, 2) and

(*i J) = (2. 1) }• Let V be the filter generated by all the sets U. One

may easily check that (3C, V) is a uniform structure. It will be this
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uniformity with which we will work. S will of course have the relative

topology.

2. Type V topologies. A subset B of K is bounded if for all UE'M

there is a F£ll such that V-BCZ U. B is bounded away from zero if

its complement K<^>B is a neighborhood of zero. 3 is of type V if for

any set B bounded away from zero, B~l is bounded.3 3 is locally

bounded if there is a bounded neighborhood of zero. Type V topologies

are locally bounded [l, Exercise 22, p. 321].

A proof of the following lemma may be found in [3, Lemma 4,

p. 911 ]. The corollary follows easily.

Lemma 1. 3 is of type V if and only if for any two sets A and B

bounded away from zero, A-B is also bounded away from zero.

Corollary. 3 is of type V if and only if:

(1) For all UE1L there is a FG11 such that if a-bEV,
then aEU or bE U.

We first observe that a topology being type V assures that the nth

root function is uniformly continuous in very many cases.

Theorem 1. Let (K, 3) be a type V topological field over which the

polynomial Xn — 1 factors into linear polynomials. Then the nth root

function, P*~, (where P(X) —X") is uniformly continuous.

Proof. Let

m = 1 if char K = 0,

= pk,        where n = pkr,        (r, p) — 1,        if char K = p.

Then Xn — 1 = (XT — 1)"", where r = n/m, and by looking at its deriva-

tive, one can see that Xr — 1 has no multiple roots. Then since X" — 1

factors into linear polynomials, there are r distinct wth roots of unity,

Wl = l, Wit   •  •  • , Wr.

Now for any b in K, Xn — bn=(Xr-br)m. Since Xr-br has the r

distinct roots b, w2b, ■ ■ ■ , wrb, we have over K the factorization

X" - bn = (X - b)m(X - w2b)m ■ ■ ■ (X - wTb)m.

To see that P*" is uniformly continuous, we must show that for all

U in 11 there is a V in 11 such that for all a and b in K, if an — bnE V,

8 Bourbaki calls such topologies locally retrobounded [l. Exe'scise 22, p. 3211. The

terminology used here is due to I. Kaplansky [3, p. 910].



197°] POLYNOMIAL FUNCTIONS 11

then (P*~(an), P*-(J)n))EU- Let UE^ be given. There is a U' in 11

such that {l, w2, • • ■ , wr) U'Q U. Extending (1) of the corollary to

Lemma 1 by induction, we assert that there is a set V in 11 such that

if cx-d.cnEV, then dEU' for some i, l^i^n.

Now let an — bn be in V for some a and b in K. Since

an —  0n  =   ra _  J)">(a _  W2J)m  .   .   .   (a —  WfJ)»»j

for some i, l^i^r, we have a—WibE U'.

Suppose that cEP*~(an). Then c = aWj for some j, l^j^r. Also,

WibwjEP^{bn), and c — Wibwj=(a — Wib)wjEU'wjC.U. Similarly, for

cEP^(bn), we may find a dEP^(an) such that c—dEU. Thus, we

have shown that if a"-t>nEF, then (P<~(an), (P^(bn))E~U, and the

proof is complete.

Corollary. For any topological field (K, 3) of type V, the square

root function is uniformly continuous.

Proof. The polynomial X2 — 1 factors over K, so this result follows

from the theorem.

We are able to prove the converse for this corollary if we restrict

attention to fields of characteristic other than 2. In fact, we have the

following somewhat more general theorem.

Theorem 2. If (K, 3) is a topological field, if char Kj^l, and if

P(X) =X2+aX-\-j3, a, PEK, then P*~ is uniformly continuous if and

only if 3 is type V.

Proof. Note that for y = P(a)ES, P*~(y)= {a, -a-a}. Clearly

P*" is uniformly continuous if and only if:

(2) For all UE^ there is a VE'M such that if

P(a) -P(b)EV, then a-bE U or a + b+aE U.

Now P(a)-P(b) = (a-b)(a+b+a). Thus, (2) clearly follows from

(1) of the corollary to Lemma 1.

Conversely, we may deduce (1) from (2). Let C/Gll be given.

Assuming that (2) is true, let V be a set in 11 satisfying P(a) —P(b)

EV implies a — bEU or a+b+aEU. Now suppose that c-dEV.

Since char Kt^2, the system of linear equations

a — b = c

a + b + a = d

has a solution a = (c+d—a)/2, b — (d — c—a)/2. But then P(a)—P(b)

= (a—b)(a+b+a) = c-dEV, so by (2), c = a—bEU or d = a-\-b+a
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EU. Thus, (1) is proven.

Note that if the property in Lemma 1 were taken as the defining

property for a type V topology, thus removing dependence on multi-

plicative inverses, then Theorem 2 clearly generalizes to any topo-

logical integral domain in which 2 is invertible.

3. Inverses of linear polynomials. Over a field K of nonzero char-

acteristic p, there are many polynomials P{X) which are linear in the

sense that P{a-\-b) =P(a)-]-P(b) for all a and b in K. For example,

take P to be of the form P(X) = XXo <XiXpl. Uniform continuity for

inverses of polynomials of this type is equivalent to a simpler condi-

tion.

Lemma 2. Let (K, 3) be a topological field, and let P be a linear poly-

nomial over K. P*~ is uniformly continuous if and only if P*~ is con-

tinuous at y for some y in S.

Proof. Let y = P(c). Note that P*~ is continuous at y if and only if:

For all t/G'U there is a FGH such that for all aEK,

ifP(a)-P(c)EV, then (P*-(P(o))f P^(P(c)))EU.

P*~ is uniformly continuous if and only if:

For all I/Gil there is a FGll such that for all a and

b£K, ifP(a)-P(b)EV, then (P*"(P(o)), P^(P(&)))GCU.

The equivalence of these two conditions follows from the facts that

P(a) -P(b) =P(a-b+c) -P(c), and

(Pt-(P(a)),I*-(P(b)))EU if and only if (P"(P(a-6+c)), P<-(P(c)))EU.

To see that this last assertion is true, suppose

(P^(P(a -b + c)), P-(P(c))) E U.

Let d be in P*-(P(a)). We must find an eEP^(P(b)) such that

d-eEU. Now P(d-b+c)=P(a-b+c). Hence,

d-b + cE P^(P(a - b + c)),

so there is an e'EP*~(P(c)) such that d — b+c — e'EU. Let e = b

-c + e'. Then d-eEU, and P(e)=P(b)-P(c)+P(e')=P(b), so

eEP^(P(b)). Similarly, one shows that for all cEP^(P(b)) there is a

dEP^(P(a)) such that d-eEU. Thus, (P<-(P(a)), P*-(P(b)))EV.
The implication in the other direction is proven similarly.
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4. Inductive c.p.r. ring topologies. In this section we will develop a

technique for exhibiting topologies on fields of prime characteristic p

which are not type V but in which the pth root function is uniformly

continuous. The technique will be a modification of the method of

inductive ring topologies introduced in [2] and developed in §§1-5

of [4]. Since the proofs of the theorems are virtually the same as the

corresponding ones in [4], we will state them without proof here.

If K has characteristic p, then the function P(X) =XP is a mono-

morphism, so P*~: S—>3Z takes elements ap of 5 to singletons {a}.

Since the subset of X consisting of the singletons is homeomorphic

with K, we may regard P*~ as a function from 5 into K in this case.

We will restrict our attention for the remainder of this section to

perfect fields of characteristic p. These are precisely the fields' for

which P is an automorphism [5, p. 64], and hence P*~ is also an auto-

morphism. Thus, if K is perfect of characteristic p, then every ele-

ment a of K has a unique pth root in K, which we will denote by allp.

To get a topology on K for which P*~ is uniformly continuous, by

Lemma 2, we need only assure that P*~ is continuous at zero. The

method of [4] gives rise to ring topologies without specific further

properties. However, by modifying the method, we can develop

topologies with this latter property.

To begin, let (Bn)nii be a sequence of subsets of K such that

BiQB2C • • • , and (JZ=1Bn = K. Let K[(Xn)] denote the ring of

polynomials over K in a countable set {Xi, X2, • • • } of indetermi-

nates. As in [4, p. 150], we define inductively a double sequence of

subsets of K[(Xn)]:

wl,     wl,     wl, ■ ■ ■
w\,     wl,---

wl,---

Let W% = {0}. Suppose now that the sets W£ have been defined

for all n and m such that 0 ^ ra ̂  w ^ & in such a way that:

(3) For all QEW%, each monomial aX^-X^ - - - X]-of Q

with a nonzero coefficient a is such that pn\ri, 1 ̂ i^s.

Then set W\\\~ {0, Xft\, -Xf+\\. Then clearly Wkt+\ also satisfies
(3). Suppose now that W*+1 has been defined for each j such that

fe + l^j^r-f-l, and such that (3) holds for m = k-{-l and n—j for
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each j. We then define W*+1 by

r* / fc+i \       / &+i \

wkr+1 = \(wk++l +  u  wl+1)v(wkr++l.  u  ^;+1)
... L\ s=r+l / \ c-r+1 /

U (5r+1 • O U {QUP| Q G w£J}] ~    UFll.
- 8=r J

Note that condition (3), the fact that all elements of K have pth.

roots, and that the function y—>yp is a monomorphism in any integral

domain of characteristic p assure that every polynomial Q in W*Xi

has a unique pth root QUp in i£[(X„)]. Also, one may check that

Wf+1 satisfies (3) for m — k-\-\, n = r.

By induction, we have W™ defined and (3) true for all n and m,

n^m. Now, let Wn be the union of the sets in the wth row of the

array, i.e.,

Wn =   U  WZ
m=n

One may verify that we have built into the collection {W„|re^0}

the following properties for all m==:0:

0EWn

Wn = -W.

Wn+l + Wn+1 C Wn

Wn+1-Wn+1QWn

Bn+l-Wn+tQWn

wl%QWn.

If we let (ak)kn denote a sequence of elements of K, and let o-(0 } be

the substitution homomorphism from ii'[(.X„)] to K defined by

Q(XU X2, • • • )->(?(ai, <H, • • ■ ) for all £> in 2C[(Xn)], then the sets

Vn=a(ak)(Wn) will satisfy the corresponding conditions with the Wn's

replaced by Vn's. The first five conditions assure that 15= { V„\ wStO}

is a basic system of neighborhoods for a ring topology on K, [l, p.

275]. The last one clearly assures that the pth root function is con-

tinuous at zero.

Definition. Call the topology just defined on K the inductive

c.p.r. ring topology (the c.p.r. for continuous pth root) on K deter-

mined by the sequences (ak) and (Bk). Denote it by 3(..p.r.((a*)> (Bk)).

The only ways that the definition of 30.p.r.((«*)> (Bk)) differs from

that of an inductive ring topology 3((a4), (Bk)) defined in [4] is the
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inclusion of {<21/p| QEW^+l) in Wf+\ and the fact that for an ordi-
nary inductive topology, WtXl would have been defined to be

JO, Xjt+i, — Xi+i} instead of what we took it to be here. What is

important is that in spite of these changes, the two basic lemmas for

inductive topologies which enabled us to prove the existence of

Hausdorff ones still remain valid.

Lemma 3. Let Q be in W%. If n<m, then Q* is in Wifor some j such

that n^j<m.

Here Qm denotes the sum of all the monomials of Q which are not

divisible by Xm. The proof of this lemma is like that of Lemma 2.1

[4, p. 153]. The only additional fact needed here is that (Qllp)Z

Lemma 4. Let Qbe a nonzero element of W™. Then Q is a polynomial

in Xm with coefficients in K\X\, • • • , XOT_i] such that l^degm(0

Degm(Q) denotes the degree of Q in the indeterminate Xm. This

lemma corresponds to Lemma 2.2 [4, p. 153].

On the strength of these two lemmas, the development in §§3-5

of [4] could be copied almost verbatim with, however, attention

restricted to perfect fields of characteristic p. From this would come

the following analog of Theorem 5.2 [4, p. 159].

Theorem 3. If K is an infinite perfect field of characteristic p, then

there are nondiscrete, Hausdorff inductive c.p.r. ring topologies on K.

We now look at a class of fields on which the inductive c.p.r. topolo-

gies cannot be type V. These will be the absolutely algebraic fields of

prime characteristic, i.e., fields K which are algebraic over their

finite prime subfield Zp.

Let K be an infinite absolutely algebraic field of characteristic p.

Then clearly K is perfect. By Theorem 3, there is an inductive c.p.r.

ring topology 3 on K which is nondiscrete and Hausdorff. Now 3 is

not type V, for as we observed in §2, a type V topology is locally

bounded, and it is known [4, Theorem 6.1, p. 159] that the only

locally bounded ring topologies on K are the discrete and indiscrete

topologies. Since we have made certain that the pth root function is

uniformly continuous for 3, we have the following result.

Theorem 4. For any prime p, there are topological fields (K, 3) of

characteristic p which are not type V but for which the pth root function

is uniformly continuous.
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It is unknown to the author under what conditions, if any, the

uniform continuity of P*~ for P a polynomial of degree 3 or more

implies that the topology is type V. Theorem 4 shows, however, that

if results in this direction are to be obtained, restrictions on the char-

acteristic of the field appear necessary, as was the case in Theorem 2.

5. Discontinuous square roots. Let D be a principle ideal domain

of characteristic other than 2, and let K be its quotient field. Then D

is also a unique factorization domain [5, Theorem 32, p. 243]. Sup-

pose that D has at least two relatively prime irreducible elements,

x and x» which do not divide 2. Let 11= {(b)\bED, b^O], where

(b) denotes the principle ideal in D generated by b. One may check

that 11 is a basic system of neighborhoods of zero for a ring topology

3 on K [l, p. 275]. We will show that the square root function P*~ is

discontinuous at one for this topology.

To do this, we will show that for every a in D, a^O, there is

a b in D such that b2-lE(a), but b-lE^x) and 6 + lGfrx)-
Thus, there is no (a) in 11 such that for all b in K, if 62 — lG(a), then

(P"(62), P^(l))G(^x).
Let a in D be given, a^O.

Case 1. a is not a multiple xx- Then o$(tx). Since neither x nor x

divides 2, either a + 2G('rx) or a —2G(tx)- In these respective cases,

let 6 = a + l and b — a — 1. In either case, we have 62 —1 = (& — 1)(6 +■ 1)

E(a), but&-lG(TX) and6 + lG(7rx)-
Case 2. a is a multiple of xx- Let a = (xx)*a', where a'ED and xx

does not divide a' in D. Since x' and x* are relatively prime in D,

clearly there arer and 5 in D such that x'r — x*s= —2 [5, Theorem 32,

p. 243]. Then for all y in D, xl'(r+;yx') — x''(s+3"i"0 = —2. Since 7rx

does not divide a' in D, either (ir, a') = l or (x, a') = l. Assume the

former. Then there exist c and d in D such that a'c—ivid = \. Let

b' = ds, and let b=Ti(r+b'Xi) + l. Then &2-l = (b-l)(b + l)

= TTi(r + b'xi)xi(,s + b'ir<) =ir<(r + 6'x0xMl +dir*') =7r'(r + &'x<)x,'^'c

= o(r+&'x<)^. Thus, 62-lG(a).

However, neither 6 — 1 nor 6 + 1 is in (xx). Suppose to the contrary

that b — lG(xx)- Then x divides 6 — 1 =x*'(r+6'x*)i s0 X must divide

r+b'x'- Since iS; 1, this implies that x divides r, but then by one of

the equations above, x divides 2, a contradiction. One similarly shows

that 6 + 1 =x,'(*+6V')G(irx)-
One may check that continuity of the square root function P*" at

any nonzero square of a topological field implies continuity at any

other nonzero square. Thus, for this topology, P*~ is discontinuous at
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every nonzero square. Note, however, that P*~ is continuous at zero.

From these observations, we have the following theorem.

Theorem 5. There are topological fields for which the square root

function is discontinuous at every nonzero point.

We remark that virtually this same proof shows that P*~ is dis-

continuous at one for the topology determined by a basic system of

neighborhoods of zero 1l'= {(a)/l-\-(a)\aED, a^O}. This topology

renders multiplicative inversion continuous, indicating that con-

tinuous inversion does not necessarily have any influence on the

continuity of the square root function.
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