ON EMBEDDING OF LATTICES BELONGING TO THE SAME GENUS

H. JACOBINSKI

ABSTRACT. If R is an order in a semisimple algebra over a Dedekind ring and M, N two R-lattices in the same genus, an upper bound for the length of the composition series of M/N' for $N'\cong N$, is given. This answers a question posed by Rolter.

Let $\mathfrak o$ be a Dedekind-ring whose quotient field k is an algebraic number field, A a semisimple algebra over k, and R an $\mathfrak o$ -order in A. Two R-lattices M, N belong to the same genus Γ if $M_p \cong N_p$ for all primes p in $\mathfrak o$. In [2] Roĭter posed the question whether every $X \in \Gamma$ is isomorphic to a maximal sublattice of M. The theorem below answers this question to the affirmative if A is simple, to the negative otherwise.

We will use notations and results from Jacobinski [1], which will be quoted as GD. Let M and N be in the same genus and $N \subset M$. We denote by $l_R(M/N)$ the length of a composition series of M/N as R-module. Clearly N is a maximal sublattice if and only if l(M/N) = 1. (For the definition of \mathfrak{L}_R' see GD, Definition 1.3, p. 5.)

Theorem. Let o be a Dedekind ring whose quotient field k is an algebraic number field and R an o-order in the semisimple k-algebra $A = \bigoplus A_i$, with A_i simple. Let M be an R-lattice in \mathfrak{L}_R' and let t_M be the number of the algebras A_i for which $A_i \otimes_o M \neq 0$. Then every lattice in the genus $\Gamma(M)$ is isomorphic to a lattice $N \subset M$ such that

$$l_R(M/N) \leq t_M$$
.

Moreover N can be chosen such that the annihilator of M/N is prime to an ideal d in \mathfrak{o} , given in advance.

PROOF. Let $U\neq\emptyset$ be a finite set of primes containing all p such that R_p is not a maximal order and also all primes dividing the given ideal d (see GD, p. 11). We embed R in a maximal order $\mathfrak D$ and choose a two-sided $\mathfrak D$ -ideal $\mathfrak F$, contained in R. For convenience we suppose that $\mathfrak F_p\neq \mathfrak D_p$ if and only if $p\in U$. As in GD, let E(M), $E(\mathfrak D M)$ denote the endomorphism-rings of M and $\mathfrak D M$ respectively.

Received by the editors July 31, 1969.

AMS Subject Classifications. Primary 1640, 1075; Secondary 2080.

Key Phrases. Representation of orders over a Dedekind ring, genus of representation modules, isomorphism classes in a genus, Dirichlet's theorem on arithmetic progressions.

We replace Γ by the subset S of all $N \subset M$, such that the annihilator of M/N is not divisible by any prime of U. Every element of Γ is isomorphic to some $N \subset S$, (GD, Proposition 2.1) and we have to find an $N \subset S$ such that $l_R(M/N) \leq t_M$. Let \mathfrak{a} be an integral left $E(\mathfrak{D}M)$ -ideal such that $\mathfrak{a}_p = (1)$ for all $p \in U$. Then $M_{\mathfrak{a}} = M \cap \mathfrak{D}M\mathfrak{a}$ is in S, and conversely, every element N of S determines a unique ideal \mathfrak{a} such that $N = M_{\mathfrak{a}}$ (GD, Proposition 21). This means that

$$\phi: \mathfrak{a} \to M \cap \mathfrak{D}M_{\mathfrak{a}}$$

is a 1-1 correspondence between integral $E(\mathfrak{D}M)$ -ideals with $\mathfrak{a}_p = (1)$, $p \in U$ and the elements of S. Since ϕ also preserves inclusions we have

$$l_R(M/N) = l_{E(OM)}(E(\mathfrak{O}M)/\mathfrak{a}).$$

The reduced norm $n(\mathfrak{a})$ is an integral ideal in $e_M C$, the center of $E(\mathfrak{D}M)$ (see GD, p. 4). Clearly $n(\mathfrak{a})$ is not divisible by any $p \in U$; moreover every such ideal in $e_M C$ is obtained as $n(\mathfrak{a})$, with $\mathfrak{a}_p = (1)$ for all $p \in U$. Now the multiplicativity of the reduced norm implies that

$$l_{E(\mathfrak{D}_{M})}(E(\mathfrak{D}_{M})/\mathfrak{a}) = l_{e_{M}C}(e_{M}C/n(\mathfrak{a})).$$

If we replace \mathfrak{a} by an ideal \mathfrak{b} , such that $n(\mathfrak{b}) \in n(\mathfrak{a}) S_{\mathfrak{F}}(e_M)$, then the corresponding lattices N and V are isomorphic (GD, Lemma 2.6 and Theorem 2.2).

Let e_i denote the primitive central idempotents in A. Then we have

$$n(\mathfrak{a})S_{\mathfrak{F}}(e_{M}) = \bigoplus_{e_{i}M\neq 0} n(e_{i}\mathfrak{a}) \cdot S_{\mathfrak{F}}(e_{i}).$$

According to the generalized version of Dirichlet's theorem on arithmetic progressions, we can find a prime ideal p_i in each $n(e_i\mathfrak{a})S_{\mathfrak{F}}(e_i)$. If then we choose \mathfrak{b} such that

$$n(\mathfrak{b}) = \bigoplus_{e_i M \neq 0} p_i,$$

the corresponding lattice V is isomorphic to N and

$$l_R(M/V) = l_{e_MC}(e_MC/\mathfrak{b}) = t_M,$$

which completes the proof.

We now turn to the question whether the inequality in the theorem can be improved. For a particular genus Γ with $S_{\mathfrak{F}}(e_{\Gamma}) \neq H_{\Gamma}$, one sees from the proof that this may easily be the case. Moreover we have taken into account only lattices $N \subset M$ such that the annihilator of M/N is prime to \mathfrak{F} . Nevertheless the bound given is best possible, if

no special assumptions are made about the order R or the genus Γ . To see this choose A such that every maximal order $e_i \mathcal{D}$ has class number >1; for this it is sufficient that all $e_i \mathcal{C}$ have class number >1.

Let e be a central idempotent in A and put $M = \mathfrak{D}e$. Then the genus $\Gamma(M)$ consists of all full fractionary ideals $\mathfrak A$ in $\mathfrak De$. Now choose an integral ideal $\mathfrak A \subset \mathfrak De$, such that no $e_i\mathfrak A$ is principal for $e_i\mathfrak A \neq 0$. If $\mathfrak B \cong \mathfrak A$, then each $e_i\mathfrak B \neq e_i\mathfrak D$ since the $e_i\mathfrak B$ are not even principal. This implies that $l_{\mathfrak D}(M/\mathfrak B) \geq l_M$ for every $\mathfrak B \cong \mathfrak A$. Thus the constant l_M cannot in general be improved.

REFERENCES

- 1. H. Jacobinski, Genera and decompositions of lattices over orders, Acta. Math. 121 (1968), 1-29.
- 2. A. V. Roiter, Integer-valued representations belonging to one genus, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 1315–1324; English transl., Amer. Math. Soc. Transl. (2) 71 (1968), 49–59. MR 35 #4255.

CHALMERS UNIVERSITY OF TECHNOLOGY, GÖTEBORG AND UNIVERSITY OF ILLINOIS