
LINEARLY ORDERED COLLECTIONS
AND PARACOMPACTNESS

J. E. VAUGHAN

1. Introduction. The purpose of this paper is to characterize para-

compactness by conditions which are formally weaker than some

considered by Michael [3], [4], [5], and which are related to some

considered by Tamano [7], [8], and Katuta [2]. In addition some

consequences of these concepts are derived. The main result is the

following

Theorem 1. Let X be a regular space. The following are equivalent

(a) X is paracompact.

(b) Every open cover of X has an open refinement which is linearly

locally finite.

(c) Every open cover of X has an open refinement which is linearly

closure-preserving.

(d) Every open cover of X has an open refinement which is linearly

cushioned in it.

Let us now define all of the terms which are mentioned in Theorem 1.

Let CU and 13 be collections of subsets of a topological space. A

collection 11 endowed with a linear (= total) order is said to be linearly

locally finite with respect to 2= provided that every majorized sub-

collection (that is, every subcollection of 11 having an upper bound

with respect to 5jj) is locally finite. This definition is equivalent to

that used by H. Tamano in [7] where he proved that (a) and (b) in

Theorem 1 are equivalent in completely regular spaces. A collection 11

endowed with a linear order is said to be linearly closure-preserving

with respect to ^ provided that every majorized subcollection of 11 is

closure-preserving. In order to define the term mentioned in (d), we

first restate a definition given in [5]. A collection 11 is said to be

cushioned in a collection 13 with cushion map f: It—>13 provided for

every subcollection 11' of 11 we have cl(UcU/)CU/(<u.'). We say that

a collection 11 endowed with a linear order is linearly cushioned in a

collection 13 with cushion map f: 11—>13 provided for every majorized

subcollection It' of 11 we have cl(UcU.')CU/(tll'). We will omit ex-

plicit mention of the cushion map if no confusion will result.

The above definitions of linearly closure-preserving and "linearly

cushioned" differ from those given by H. Tamano in  [8] where he
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required the linear order to be a well-order. In that paper he proved

(using his definitions) that (a), (c), and (d) of Theorem 1 are equiva-

lent in a completely regular space. The proof of Theorem 1 is given

in §2, and is different from Tamano's proof because he made use of

the Stone-Cech compactification of completely regular spaces. This

method, of course, is not available for arbitrary regular spaces.

In §3 we consider the relationship of the "linear concepts" to the

concepts considered by Michael. In §4 we consider the consequences

of replacing the word "majorized" by the word "bounded" in the

above definitions. In §5 we discuss the concept of order local finite-

ness in the sense of Katuta, and give an analogue of Theorem 1.

2. Proof of Theorem 1. We begin with a key set-theoretic lemma.

Lemma 1. Every set with a linear order ^ can be given a well-ordering

^ ^ such that every ^ ^ majorized set is also ^ majorized.

Proof. Let ^ be a linear order on a set X. Let B be a well-ordered

cofinal subset of A. If B has a largest element, then any well-order

on X will work. We assume B has no largest element with respect

to ^. For every bEB define Ab= {xGA: x<b}, and

A = Ab- U {Ap:p <b    and   p E B}.

Notice that {Db: bEB} is a partition of A. Now let ^6 be any well-

order on Db for every bEB, and define an order g ^ on A as follows.

Let x, yEX, then x ^ gy if and only if

(1) there exists bEB such that x, yEDb and x^&y, or

(2) there exist b, cEB such that xEDb, yEDc and b <c.

It is routine to check that ^ ^ is a well-order for X having the de-

sired property.

The author does not know if every linearly closure-preserving open

cover of a topological space has a closure-preserving refinement. For

the other kinds of collections, however, one can prove the following

Lemma 2. Let X be a topological space. Every open cover 11 of X which

is linearly locally finite (resp. linearly cushioned in V) has a refinement

—not necessarily open—which is locally finite (resp. cushioned in V).

Proof. We prove the second case. Let 11 be linearly cushioned in

V with respect to ^. Let ^g bea well-order on 11 such that every

^ ^ majorized subset of 11 is ^ majorized. Clearly, 11 is linearly

cushioned in V with respect to g ^ and with the same cushion map

/: ll-*). Define Hv= U-[J{VECVL: V<<U} for every f/GH- Let

3C= {Hv: [/Git}, then 3C is a refinement of 11 and is cushioned in V
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with cushion map g: 3C->13 defined by g(Hu) =f(U). To see that 3C

covers X, let xEX, and let U be the first element of 11 containing x,

then xEHv. To see that 3C is cushioned in 13, let 3C' be any subcollec-

tion of 3C, and let p be in cl(L)3C'). Since 11 is an open cover of X, there

exists [/Gil such that pEU. Then U is an open set which misses Hv

for all V>>U.Set5C"={Hv: V^^U},and note that pGel(U3C").
The subcollection 1l"= { FGll: PfvG3C"} is majorized by U hence

cl(Ult")CU/(1l")=Ug(3C"). It follows that £GUg(3C'), and this
implies that cl(U3C')CUg(5C').

Proof of Theorem 1. The implications (a)=s>(b)=>(c)=>(d) are

obvious. It remains to prove (d)=>(a). By Theorem 1.1 of [S], it

suffices to show that every open cover has a refinement which is

cushioned in it, but this follows immediately from Lemma 2.

3. Relations of linearly ordered collections to some other prop-

erties. It is clear that every <r-locally finite collection is a linearly

locally finite collection. Conversely, we have the following obvious

Proposition 1. Let "Ml be a collection which is linearly locally finite in

a space X.

(a) If 11 has a largest element, then 11 is locally finite.

(b) If 11 has a countable cofinal subset, then 11 is a-locally finite.

(c) // It does not have a countable cofinal subset, then 11 is point-finite

ii.e., every point in X is a member of only finitely many elements of 11).

Remark. Proposition 1 (a) and (b) remain true if everywhere the

words "locally finite" are replaced by "closure-preserving," or

"cushioned in 13."

Proposition 2. In a space X which satisfies the first axiom of count-

ability, every collection which is linearly locally finite is a-locally finite.

Proof. Let 11 be linearly locally finite with respect to a linear order

g. Assume 11 is not c-locally finite; so 11 does not have a countable

cofinal subset. Since 11 is not locally finite there exists xGX such that

every neighborhood of x intersects infinitely many members of 11.

Let \Niix)\i = \,2, ■ ■ ■ } be a fundamental system of neighborhoods

of x such that Ni(x)Z)Ni+i(x). Then there exists an infinite se-

quence 11'= {Ui:i — 1, 2, • • ■ } of distinct elements of 11 such that

UiC\Niix) t£0. Since It' is not cofinal in 11 it is majorized, and there-

fore locally finite. Thus, there exists A;(x) which intersects only

finitely many elements of It'. But this is impossible since Ni(x)f~\Un

i£0 for n^i.
Remark. Proposition 2 remains true if everywhere the words

"locally finite" are replaced by "closure-preserving" or "cushioned in
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13." The referee pointed out that a similar proof can be given to show

that Proposition 2 holds in a Pi-space which is a g-space in the sense

of E. Michael [6]. Further, one can show that in a Pi-regular g-space

every linearly closure-preserving collection is c-closure-preserving. It

is not possible, however, to extend Proposition 2 to g-spaces and

cushioned collections. Here is a simple example. Let fi be the first

uncountable ordinal, then [0, fi] with the order topology is a compact

Hausdorff space (hence a g-space). Let V = { [0, fi)}, and let 11

= { {p} '• PE [0, fi)}. It is easy to see that It is linearly cushioned in

1) with respect to the usual order on [0, fi), but 11 is not <r-cushioned

in V.

An immediate consequence of the preceding propositions is the

following modification of the Nagata-Smirnov Theorem. Call a base

for a topology a a-linearly locally finite base if it is a countable union

of linearly locally finite collections.

Corollary. A regular Ti-space is metrizable if and only if its

topology has a a-linearly locally finite base.

We now partially strengthen Lemma 2 for normal spaces.

Proposition 3. Let X be a normal space. Every linearly locally finite

open cover of X has a o~-locally finite open refinement.

Proof. Let 11 be a linearly locally finite open cover of A. If 11 is

(T-locally finite, then there is nothing to prove. If 11 is not o--locally

finite, then by Proposition 1 it is point-finite. This means that 11 is

shrinkable, i.e., there exists an open cover {Hv: i7Glt} of X such

that HuEU for all £/GH. Let Wv=- U-U {Tlv: V< U}. Then
W = { Wv'. c7Glt} is in fact a locally finite open refinement of 11.

Remark. In light of Proposition 3 it is, perhaps, interesting to

note that every c-locally finite open cover of a normal P2-space has a

locally finite open refinement if and only if every normal P2-space is

countably paracompact. Whether every normal P2-space is countably

paracompact is a well-known unsolved problem raised by C H.

Dowker.

From Theorem 1 we see that if every open cover of a regular space

has a linearly locally finite open refinement, then the space is para-

compact. The following question arises: If every open cover of a

regular space has a c-linearly locally finite open refinement (i.e., a

refinement which is a countable union of linearly locally finite open

collections), then is the space paracompact? The following example

shows that the answer is in the negative.

Example 1. A completely regular P2-space X which is not normal

(hence not paracompact), and every open cover of X has a <7-linearly
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locally finite open refinement. This example is due to J. Dieudonne

[l]. Let co, fi be the first infinite and the first uncountable ordinals

respectively. Let X=[0, fi]x[0, w] —(fi, co). For every w<co let

\UX,„ = [x, fi]x{«}:x<fi} be a fundamental system of neighbor-

hoods of (fi, n). Let { Fc,n= {x} X [n, w]:n<w} be a fundamental

system of neighborhoods of (x, co). All other points (x, n) for x<fi,

n<w are to be isolated. Let 11 be any open cover of X. For every n <w

(resp. x<fi) let Un= Ux,n (resp. Vx= Vx,„) be a basic open neighbor-

hood of (fi, n) (resp. (x, w)) which is contained in some element of 11.

Let 13i = I f/re: «G [0, co)}, and order 131 by the usual order on [0, u).

Let 132 = | Fx: xG [0, fi)}, and order 132 by the usual order on [0, fi).

Let 133 be the set of all points which are not contained in any element

of 13iWl32, and give 133 any well-order. Clearly, Uf= 113» is an open

cr-linearly locally finite refinement of 11.

4. Majorized versus bounded. The main purpose of this section is

to show that the conditions in Theorem 1 cannot be weakened by

replacing the word "majorized" by "bounded (above and below)" in

the definitions given in §1. To facilitate further discussion we make

the following definition: A collection 11 endowed with a linear order

= is said to be weakly linearly locally finite with respect to = provided

every bounded subcollection of 11 is locally finite. It is clear that every

linearly locally finite collection is weakly linearly locally finite. If

there is a least element for the linear order, then the converse holds.

In any case we have

Proposition 4. A collection 11 is weakly linearly locally finite if and

only if 11 = 1!iWlt2 with each of Hi and 1l2 linearly locally finite.

Proof. To show the only if part, let [/0GH and define

Oli = {PG 11: Co = U}.

Give Hi the induced order from 11. Let 1l2 = 1l — 1li, and give 1l2 the

order induced from the inverse of the original order relation on 11.

Then Hi and 1l2 are linearly locally finite.

To prove the if part, let 11,- be linearly locally finite with respect to

^i for i=l, 2, and let H2' = H2 — Hi- Define a linear order on 11 as

follows. If U, [/'Gil, then U^ U' if and only if (1) [/Gil" and
[/'Glli, (2) U, P'Glli and U = iU', or (3) U, U'E%' and U'gtU.
Then 11 is weakly linearly locally finite with respect to f£.

The space X of Example 1 is a nonparacompact space in which

every open cover has a weakly linearly locally finite open refinement.

This is easy to see because V3 in that example is actually locally
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finite. If we let V[ = T)3WUi, and order V[ in such a way that every

element of Vs precedes every element of Vi, then V[ is also linearly

locally finite. By Proposition 4, V = V[WTJ2 is weakly linearly locally

finite.

Remark. In a similar manner one may define "weakly linearly

closure-preserving" and "weakly linearly cushioned in *0". The ob-

vious analogues of Proposition 4 still hold.

5. Order local finiteness. Y. Katuta [2] called a collection 11

endowed with a linear order ^ order locally finite with respect to ^

provided for every [/G1I the collection { VE 11: V^U} is locally

finite at each point of U. He also proved [2, Lemma 2, p. 616] that

a regular space is paracompact if and only if every open cover has

an open order locally finite refinement. This is a stronger result than

(b)=>(a) in Theorem 1, and his proof did not use well-ordering. It is

natural to ask if all of Theorem 1 can be similarly strengthened. The

answer is in the negative for the following extension of Katuta's

concept. We say that a collection 11 endowed with a linear order ^

is order closure-preserving provided for every [/Git and every xEU

and every subcollection H'CfFGll: V^U}, if xGcl(Ull'), then
there exists a [/'Gil' such that xGel([/').

Example 2. Let X = [0, fi) with the order topology. Every open

cover of A has an open order closure-preserving refinement, but A

is not paracompact. Let V be an open cover of A, and let xGA. If x

is a limit ordinal let Wx be any open interval containing x which is

contained in some element of V. If x is an isolated point let Wx = {x}.

Then °W = {PF^xGfO, fi)} is order closure-preserving with respect

to the inverse of the usual order on the index set [0, fi), and clearly

an open refinement of V.

It is possible, however, to get some results if we consider well-

ordered collections. Call a collection well-ordered closure-preserving if

it is order closure-preserving with respect to a well-order. A collection

11 endowed with a well-order ;§ is said to be well-ordered cushioned in

a collection V with cushion mapf: 11—>U provided for every [/Gil and

for every xEU and every subcollection ll'C { FG11: F^ [/} if

xGcl(Ult'), then xGU/(1l'). We can now incorporate Katuta's result

in the following theorem.

Theorem 2. Let X be a regular space. The following are equivalent.

(a) A is paracompact.

(b) Every open cover of X has an open refinement which is order

locally finite.
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(c) Every open cover of X has an open refinement which is well-

ordered closure-preserving.

(d) Every open cover of X has an open refinement which is well-

ordered cushioned in it.

Proof. Katuta proved that (a) and (b) are equivalent. Clearly

(a)=>(c)=>(d). The proof that (d)=>(a) is similar to the proof that

(d)=>(a) in Theorem 1.

The author would like to thank the referee for bringing Katuta's

results to his attention, and for other helpful comments.
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