A NOTE ON A THEOREM BY H. D. BRUNK¹

RICHARD DYKSTRA²

Throughout the paper, the notation will be consistent with that used by H. D. Brunk in [1]. That is (Ω, S, μ) is a complete measure space, and L_2 denotes the set of square integrable functions corresponding to it. We shall call \mathcal{L} , a collection of sets in S, a sub- σ -lattice if it is closed under countable unions and intersections, and contains the null set \emptyset , and Ω . A function X is \mathcal{L} -measurable if $[X>a] \in \mathcal{L}$ for all real a. $L_2(\mathcal{L})$ denotes the set of \mathcal{L} -measurable functions which are also in L_2 . A family C of measurable functions is called a convex cone if $k \geq 0$, $X \in C$, $Y \in C \Rightarrow kX \in C$, $X + Y \in C$. A collection of functions is a lattice if the pointwise supremum and infinum of any two functions in the collection is in the collection. If M is a collection of functions, $-M = \{-X : X \in M\}$. Similarly, $\mathcal{L}^c = \{A : A^c \in \mathcal{L}\}$. I_A or I(A) will be the indicator function of the set A.

In [1], H. D. Brunk stated the following theorem.

THEOREM. M, a subset of L_2 is $L_2(\mathfrak{L})$ for some σ -lattice \mathfrak{L} containing Φ and Ω if and only if

- (1) M is a lattice closed in L_2 ;
- (2) a real, $X \in M$, A = [X > a], $\mu(A) < \infty$ implies $I(A) \in M$; a real, $X \in M$, $A = [X \ge a]$, $\mu(A^\circ) < \infty$ implies $-I(A^\circ) \in M$;
 - (3) M is a convex cone.

However the theorem is not quite true as stated, for if M is the set of nonnegative functions which are also square-integrable with respect to the measure space of the reals, Borel sets, and Lebesque measure, then M satisfies the conditions of the theorem, yet M is not $L_2(\mathfrak{L})$ for any σ -lattice \mathfrak{L} .

However, if we slightly change (2), we can drop the requirement that M be a lattice to obtain the following theorem.

THEOREM. M, a nonempty subset of L_2 , is $L_2(\mathfrak{L})$ for some σ -lattice \mathfrak{L} containing Φ and Ω if and only if

- (1) M is a convex cone closed in L_2 ;
- (2) $a \ge 0$, $X \in M(-M)$, $A = [X \ge a]$, $\mu(A) < \infty$ implies $I(A) \in M(-M)$.

Received by the editors August 16, 1968.

¹ This investigation was supported in part by PHS Research Grant No. GM 14448-01 from the Division of General Medical Sciences.

² Currently at the University of Missouri.

PROOF. (The proof incorporates many of the arguments given in Brunk's proof as well as the notation used in [1].) To show necessity, note that it is easy to verify that $L_2(\mathfrak{L})$ is a convex cone since $[X+Y>a]= \cup_r \{[X>a-r] \cap [Y>r]\}$ where the union is taken over the set of rational numbers. To show that $L_2(\mathfrak{L})$ is closed in L_2 , assume that $f_n \xrightarrow{L_2} f$, where $f_n \in L_2(\mathfrak{L})$ for all n. Then there exists, a subsequence f_{n_j} such that $f_n \xrightarrow{a.e.} f$. Now for each real number a,

$$[f > a] = \bigcup_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{j=k}^{\infty} [f_{n_j} > a + 1/m],$$

which belongs to \mathcal{L} since \mathcal{L} is closed under countable unions and intersections. Thus $f \in L_2(\mathcal{L})$, so that $L_2(\mathcal{L})$ is closed in L_2 . It is easy to verify that $L_2(\mathcal{L})$ also satisfies (2).

Let us now be concerned with showing the sufficiency. Observe first of all that $\mu([X>a]) < \infty$, where $X \in M$ and $a \ge 0$, implies that $I([X>a]) \in M$ since $I([X\ge a+1/n]) \in M$ for all n by (2) and converges to I([X>a]) in L_2 .

Now let
$$\mathfrak{L}^+ = \{ [X > a]; a \ge 0, X \in M \}$$
 and $\mathfrak{L}^- = \{ [X \ge -a]; a \ge 0, X \in M \}.$

defined. Yet

We will show that \mathfrak{L}^+ is closed under countable unions and countable intersections. Let C be a countable union of sets in \mathfrak{L}^+ . Then since $[X>0]=\bigcup_{n=1}^{\infty} [X>1/n]$, we may assume that $C=\bigcup_{i=1}^{\infty} C_i$ where $0<\mu(C_i)<\infty$ and $C_i\in\mathfrak{L}^+$. Define $Y_n=\sum_{i=1}^n I(C_i)[2^i\mu(C_i)\vee 2^i]^{-1}$ where $2^i\mu(C_i)\vee 2_i$ denotes the supremum of $2^i\mu(C_i)$ and 2^i . Then $Y_n\in M$ for all n by (1). Since $\{Y_n\}$ is a monotone nondecreasing sequence of functions bounded above by 1, $Y=\lim_{n\to\infty} Y_n$ is well

$$\lim_{n \to \infty} \int (Y - Y_n)^2 d\mu = \lim_{n \to \infty} \int \left(\sum_{i=n+1}^{\infty} I(C_i) \left[2^i \mu(C_i) \vee 2^i \right]^{-1} \right)^2 d\mu$$

$$\leq \lim_{n \to \infty} \int \sum_{i=n+1}^{\infty} I(C_i) \left[2^i \mu(C_i) \vee 2^i \right]^{-1} d\mu$$

$$= \lim_{n \to \infty} \sum_{i=n+1}^{\infty} \left[2^i \mu(C_i) \vee 2^i \right]^{-1} \int I(C_i) d\mu$$

$$\leq \lim_{n \to \infty} \sum_{i=n+1}^{\infty} \left[2^i \mu(C_i) \right]^{-1} \mu(C_i)$$

$$= \lim_{n \to \infty} \sum_{i=n+1}^{\infty} 1/2^i = 0,$$

since one can interchange the summation sign with the integral in the case of nonnegative functions. Thus $Y \in M$ by (1). But it is easily shown that $C = \bigcup_{i=1}^{\infty} C_i = [Y > 0] \in \mathfrak{L}^+$, so that \mathfrak{L}^+ is closed under countable unions.

Suppose now that C is a countable intersection of sets in \mathcal{L}^+ . Then we may assume that $C = \bigcap_{i=1}^{\infty} C_i$ where $C_i = [X_i > 0]$, $X_i \in M$, since [X > a] = [I([X > a]) > 0] where a > 0. Let $A_n = [X_1 > 1/n]$, so that $\bigcup_{n=1}^{\infty} A_n = C_1$. Then $[(I(A_n) + I([X_i > 1/k]) > 1] = A_n \cap [X_i > 1/k] \in \mathcal{L}^+$ for all positive integers i, k, and n. Thus $\bigcup_{k=1}^{\infty} \{A_n \cap [X_i > 1/k]\} = A_n \cap \{\bigcup_{k=1}^{\infty} [X_i > 1/k]\} = A_n \cap C_i \in \mathcal{L}^+$ for all i and n. By a previous argument, $Z_n = \lim_{m \to \infty} \sum_{i=2}^m I(A_n \cap C_i) [2^i \mu (A_n \cap C_i) \vee 2^i]^{-1} \in M$ for all n. Thus by (2), $I([Z_n \ge \sum_{i=2}^{\infty} [2^i_\mu (A_n \cap C_i) \vee 2^i]^{-1}) \in M$ so that

$$\left[I\left(\left[Z_n \geq \sum_{i=2}^{\infty} \left[2^i \mu(A_n \cap C_i) \vee 2^i\right]^{-1}\right]\right) > 0\right] \\
= \bigcap_{i=2}^{\infty} \left[A_n \cap C_i\right] = A_n \cap \left(\bigcap_{i=2}^{\infty} C_i\right) \in \mathfrak{L}^+,$$

so that $C = \bigcap_{i=1}^{\infty} C_i = \bigcup_{n=1}^{\infty} \{A_n \cap (\bigcap_{i=2}^{\infty} C_i)\} \in \mathfrak{L}^+$.

Let us now show that \mathcal{L}^- is also closed under countable unions and countable intersections. Clearly it will suffice to show that this is true for $(\mathcal{L}^-)^c$. But

$$(\mathcal{L}^{-})^{c} = \{ [X < -a]; a \ge 0, X \in M \} = \{ [-X > a]; a \ge 0, X \in M \}$$

$$= \{ [Y > a]; a \ge 0, Y \in -M \}.$$

However, this is how \mathcal{L}^+ is defined with the exception that M is replaced by -M. Clearly, -M has precisely the properties that M has, and hence $(\mathcal{L}^-)^c$ is closed under countable unions and countable intersections by an earlier part of the theorem.

If $A \in \mathcal{L}^+$ and $B \in \mathcal{L}^-$ where $\mu(A) < \infty$, and $\mu(B^c) < \infty$, then $Z = I(A) - I(B^c) \in M$, so that $A \cap B = [Z > 0] \in \mathcal{L}^+$ and $A \cup B = [Z \ge 0] \in \mathcal{L}^-$. In general, if $A \in \mathcal{L}^+$, and $B \in \mathcal{L}^-$, then there exists a sequence $\{A_i\} \in \mathcal{L}^+$ and a sequence $\{B_i\} \in \mathcal{L}^+$ such that $\mu(A_i) < \infty$, $\mu(B_j^c) < \infty$ for all positive integers i and j, $A = \bigcup_{i=1}^{\infty} A_i$, and $B = \bigcap_{i=1}^{\infty} B_j$. Then $A \cap B = \bigcup_{i=1}^{\infty} \bigcap_{j=1}^{\infty} (A_i \cap B_j) \in \mathcal{L}^+$, and $A \cup B = \bigcap_{j=1}^{\infty} \bigcup_{i=1}^{\infty} (A_i \cup B_j) \in \mathcal{L}^-$, so that $\mathcal{L} = \mathcal{L}^+ \cup \mathcal{L}^-$ is a σ -lattice containing Φ and Ω . It is easily shown that $M \subset L_2(\mathcal{L})$. The reverse inclusion can be shown by separating an arbitrary member f of $L_2(\mathcal{L})$ into its positive and negative part, and approximating each part by the respective simple functions

$$f_n^+ = \sum_{i=1}^{n2^n} 1/2^n I[f^+ \ge i/2^n],$$

and

$$-f_n^- = -\sum_{i=1}^{n^{2^n}} 1/2^n I[-f^- \le -i/2^n],$$

which belongs to M. Then using the fact that these simple functions converge in L_2 to the respective positive and negative parts of f, and the fact that M is closed under addition, we have our desired result.

In [1], condition (2) can be replaced by the condition that M contain all constant functions when $\mu(\Omega) < \infty$. The corresponding condition of the revised theorem cannot be weakened in this manner.

REFERENCE

1. H. D. Brunk, On an extension of the concept conditional expectation, Proc. Amer. Math. Soc. 14 (1963), 298-304. MR 26 #5599.