
A NOTE ON A THEOREM BY H. D. BRTJNK1

RICHARD DYKSTRA2

Throughout the paper, the notation will be consistent with that

used by H. D. Brunk in [l]. That is (12, S, p) is a complete measure

space, and L2 denotes the set of square integrable functions corre-

sponding to it. We shall call £, a collection of sets in S, a sub-a-lattice

if it is closed under countable unions and intersections, and contains

the null set 0, and 12. A function A is £-measurable if [A>a]G£

for all real a. L2(£) denotes the set of immeasurable functions which

are also in L2. A family C of measurable functions is called a convex

cone iik^O, XeC, FGC=>£AGC, X+YeC. A collection of func-
tions is a lattice if the pointwise supremum and infinum of any two

functions in the collection is in the collection. If M is a collection of

functions, -M= {-X: XeM}. Similarly, £C={A: Ace&}- J a or

1(A) will be the indicator function of the set A.

In [l], H. D. Brunk stated the following theorem.

Theorem. M, a subset of L% is L2(£) for some a-lattice £ containing

$ and 12 if and only if
(1) M is a lattice closed in L2;

(2) a real, AGAf, A = [A>a], p(A)< oo implies I(A)eM; a real,
XeM, A = [A^a], p(Ac)< co implies -I(Ac)eM;

(3) M is a convex cone.

However the theorem is not quite true as stated, for if M is the set

of nonnegative functions which are also square-integrable with re-

spect to the measure space of the reals, Borel sets, and Lebesque

measure, then M satisfies the conditions of the theorem, yet M is not

L2(£) for any oMattice £.

However, if we slightly change (2), we can drop the requirement

that Af be a lattice to obtain the following theorem.

Theorem. M, a nonempty subset of L2, is L2(£) for some a-lattice £

containing <£ and 12 if and only if

(1) M is a convex cone closed in L2;

(2) a^O, XeM(-M), A=[X^a], p(A)< <*> implies 1(A)

eM(-M).
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Proof. (The proof incorporates many of the arguments given in

Brunk's proof as well as the notation used in [l].) To show neces-

sity, note that it is easy to verify that P2(£) is a convex cone since

[X+Y>a]=\Jr {[X>a-r]n[Y>r]\ where the union is taken

over the set of rational numbers. To show that L2(£) is closed in P2,

assume that fnf^f, where fnEL2(£) for all n. Then there exists, a

subsequence fnj such that /nj!Lf" /• Now for each real number a,

00 OO OO

[/ > a] = U   U   D [fnj > a + 1/m],
m=l k=l j=k

which belongs to £ since £ is closed under countable unions and

intersections. Thus/GP2(£), so that L2(£) is closed in P2. It is easy

to verify that i2(£) also satisfies (2).

Let us now be concerned with showing the sufficiency. Observe

first of all that p([X>a]) < oo, where XEM and a^O, implies that

I([X>a])EM since I([X^a + l/n])EM for all n by (2) and con-

verges to I([X>a]) in P2.

Now let £+= {[X>a]; a^O, XEM) and

£~={[X^-a];       a^0,XEM].

We will show that <£+ is closed under countable unions and countable

intersections. Let C be a countable union of sets in £+. Then since

[A>0] =ICi [A>1/m], we may assume that C = Uf"iC,- where

0</x(C<)<oo and dE£+. Define F„= YZ-i I(Ci)[2*fi(Ci)V2i]-1
where 2ip(Ci)\/2i denotes the supremum of  2ip(d) and 2*. Then

Y„EM for all n by (1). Since { F„} is a monotone nondecreasing

sequence of functions bounded above by 1, F=lim„_M Y„ is well

defined. Yet

lim    f (Y - Yn)2dp =  lim    f( Y   1(d)[2^(C.) V 2']-')2dp

/CO

Y I(Ci)[2'p(d)V 2']-'dp
i=n+l

00 f+

= lim   Y   [2'm(C<) V 2'-]-1 I I(d)dp
n-»oo  i=n+i J

OO

^ lim   Y   [2>(C,)]-V(C,)

CO

= lim   Y  1/2* = 0,
n->»   j_n+i
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since one can interchange the summation sign with the integral in

the case of nonnegative functions. Thus YeM by (1). But it is easily

shown that C = U("1 C,= [F>0]G£+, so that £+ is closed under

countable unions.

Suppose now that C is a countable intersection of sets in £+. Then

we may assume that C=C\^Li C,- where C,= [A,->0], XiEM, since

[X>a]=[l([X>a])>0] where a>0. Let ^„=[Ai>l/«], so that

U:,iAn = Ci.Then [(I(An)+I([Xi> 1/k]) > l] =AnC\ [Af> 1/k] G£+
for all positive integers i, k, and n. Thus U^°_i {^nr^fA.^l/^]}

= An(~\ {Utli [A,-> 1/k]} =Anr\de£+ for all i and n. By a previous
argument, Zn = limm^M £"12 I(An(~\Ci) [2ip(Anr\Ci)'V2i]-1EM for

all n. Thus by (2), I([ZnZ £"=2 K (^„nC,)V2*']-1])Gil4'so that

[/ ([zn 2; £ [2<MU» C\ d) V 2*]-1]) > °]

= n[i„nci] = i,n(n c<) g £+,
1-2 V «=2       /

so that c=nr_i c<=u».i {A%r\(r\?_2 d)}e&+.
Let us now show that £~ is also closed under countable unions

and countable intersections. Clearly it will suffice to show that this

is true for (£~)c. But

(£~)° = {[X < - a]; a ^ 0, X e M} = {[-A> a];a^0,X E M}

= {[F> a];a^ 0, Ye - it).

However, this is how £+ is defined with the exception that M is

replaced by — M. Clearly, — M has precisely the properties that M

has, and hence (£~)c is closed under countable unions and countable

intersections by an earlier part of the theorem.

If ^4G£+ and BE£~ where p(A)<<x>, and p(Bc)<<x>, then

Z = I(A)-I(B°)eM, so that Af\B=[Z>Q]E£+ and AKJB
= [Z^0]G£~. In general, if ^4G£+, and BE£~, then there exists a

sequence {A,} G£+ and a sequence {P»} G£+ such that p(A{) < <» ,

//(.By) < 00 for all positive integers iand j, A =Ufl1 Ai, andP = flf™ 1 Py.

Then Ar\B=\}?ml fl/li (A^B,)G£+, and ,4UP = fl^" 1 U/li (AtUBA
G£~, so that £ = £+U£~ is a er-lattice containing <J> and 12. It is

easily shown that MEL2(£). The reverse inclusion can be shown by

separating an arbitrary member/ of L2(£) into its positive and nega-

tive part, and approximating each part by the respective simple

functions
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/: = y i/2"/[/+ ^ i/2n],
t=l

and

-/:=-£ i/2n/[-/_ = - i/2n\,

i=l

which belongs to M. Then using the fact that these simple functions

converge in L2 to the respective positive and negative parts of/, and

the fact that M is closed under addition, we have our desired result.

In [l], condition (2) can be replaced by the condition that M

contain all constant functions when p(Q) < oo. The corresponding

condition of the revised theorem cannot be weakened in this manner.
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