FATOU'S LEMMA IN SEVERAL DIMENSIONS1

DAVID SCHMEIDLER

ABSTRACT. In this note the following generalization of Fatou's lemma is proved:

LEMMA. Let $(f_n)_{n-1}^{\infty}$ be a sequence of integrable functions on a measure space S with values in R_+^d , the nonnegative orthant of a d-dimensional Euclidean space, for which $ff_n \rightarrow a \in R_+^d$. Then there exists an integrable function f, from S to R_+^d , such that a.e. f(s) is a limit point of $(f_n(s))_{n-1}^{\infty}$ and $ff \leq a$.

1. Introduction. When d=1, the result is a form of Fatou's lemma. The assertion above is applied in mathematical economics [4].² It is also strongly connected with the theory of set valued functions [2] or correspondences [3]. The nontrivial part of the arguments is limited to the case where S is an atomless measure space. In the purely atomic case the lemma is reduced to a simple exercise in series. In any case, the lemma cannot be proved by a successive application of Fatou's lemma d times.

A few corollaries of the lemma are proved in §3.

2. Preliminary results and the proof of the lemma. Let $(A_n)_{n=1}^{\infty}$ be a sequence of (nonempty) subsets of R^d . We denote by Lim $\sup_n A_n$ the set of all the limit points of the sequences $(a_n)_{n=1}^{\infty}$ with $a^n \in A_n$, $n=1, 2, \cdots$. Denote by $x \cdot y$ the inner product, $\sum_{i=1}^{d} x^i y^i$, in R^d .

PROPOSITION 1. For each $p\gg 0$ there is an integrable function g such that $p\cdot \int g \leq p\cdot a$ and a.e. $g(s)\in \text{Lim}_{n}\{f_{n}(s)\}$ and $p\cdot g(s)=\text{lim}_{n}\{f_{n}(s)\}$

PROOF. Define $h(s) = \liminf_n p \cdot f_n(s)$. As $p \cdot f_n(s) \to p \cdot a$, by Fatou's lemma $\int h \leq p \cdot a$. Now we decompose h to d integrable components g^1, \dots, g^d such that a.e. $p \cdot g(s) = h(s)$.

Define:

$$g_n^1(s) = \inf\{f_k^1(s) \mid k \ge n \text{ and } p \cdot f_k(s) < h(s) + 1/n\}.$$

For each $r \in \mathbb{R}^1$ and $n = 1, 2, \cdots$ one has

Received by the editors February 28, 1969 and, in revised form, June 26, 1969. AMS Subject Classifications. Primary 28.50; Secondary 70.10.

Key Words. Fatou lemma, vector valued integrals.

¹ This research has been sponsored in part by the Office of Naval Research F 61052 67C 0094.

² The author is thankful to Werner Hildenbrand for suggesting the problem. Thanks are also due to Bezalel Peleg and Micha Perles for some very helpful remarks.

$$\{s \mid g_n^1(s) < r\} = \bigcup_{k \ge n} (\{s \mid f_k^1(s) < r\} \cap \{s \mid p \cdot f_k(s) < h(s) + 1/n\}).$$

Hence (g_n^1) is a monotone sequence of measurable functions, each bounded by the integrable function $(1/p^1)(h+1)$. Define $g^1(s) = \lim_n g_n^1(s)$ then g^1 is an integrable function and a.e. $p^1g^1(s) \le h(s)$ and $g^1(s) \in \text{Lim Sup}_n \{f_n^1(s)\}$.

Proceed by induction:

$$g_n^i(s) = \inf\{f_k^i(s) \mid k \ge n \text{ and } p \cdot f_k(s) < h(s) + 1/n$$

and $f_k^j(s) < g_n^j(s) + 1/n, j = 1, \dots, i-1\}.$

It is easy to check that $g_n^i(s)$ is well defined and $g^i(s) = \lim_n g_n^i(s)$ is an integrable function with $\sum_{j=1}^i p^j g^j(s) \le h(s)$ and $(g^1(s), \dots, g^i(s)) \in \text{Lim Sup}_n \left\{ (f_n^1(s), \dots, f_n^i(s)) \right\}$ a.e. After d steps we have $g(s) = (g^1(s), \dots, g^d(s))$ such that a.e. $p \cdot g(s) = h(s)$ and $g(s) \in \text{Lim Sup}_n \left\{ f_n(s) \right\}$. Q.E.D.

Denote: $Q_y = \{x \in \mathbb{R}^d_+ | x \leq y\}, y \in \mathbb{R}^d_+$.

PROPOSITION 2. Let A be a closed, convex subset of R_+^d and $y \in R_+^d$ such that $A \cap Q_y = \emptyset$. Then there is $q \gg 0$ with

$$\sup\{q \cdot x \mid x \in Q_{\nu}\} < \inf\{q \cdot x \mid x \in A\}.$$

PROOF. By the separation theorem there are p and α such that $p \cdot x < \alpha < p \cdot z$ for all $x \in Q_y$ and all $z \in A$. Let p' be the vector obtained from p by substitution of zero for each negative coordinate of p. For $x \in A$, $x \ge 0$ so $p' \cdot x \ge p \cdot x > \alpha$. For $x \in Q_y$ let x' denote the vector obtained from x by substitution of zero for those coordinates which we changed previously in p. Of course, $x' \in Q_y$, so $p' \cdot x = p \cdot x' < \alpha$. Denote by p_δ the vector obtained from p' by substitution of $\delta > 0$ for each zero in p'. Again for each $x \in A$ $p_\delta \cdot x \ge p' \cdot x > \alpha$. For $x \in Q_y$ one has $p_\delta \cdot x \le p' \cdot x + d\delta < \alpha + d\delta$. Because of the compactness of Q_y there is a $\delta' > 0$ such that $q = p_{\delta'}$ fulfills the requirements of the proposition. Q.E.D.

For each s in S let F(s) be a nonempty subset of R^d . Following [2] we define:

$$\int F = \left\{ \int h \mid h \text{ is integrable and a.e. } h(s) \in F(s) \right\}$$

PROPOSITION 3. Let $A = \int \text{Lim Sup}_n \{f_n(s)\}$ and $q\gg 0$ such that for each $x \in A$, $q \cdot x \ge q \cdot a$. Then there is a subsequence $(f_{n_k})_{k=1}^{\infty}$ of (f_n) such that for each $x \in \int \text{Lim Sup}_k \{f_{n_k}(s)\}, q \cdot x = q \cdot a$.

PROOF. Denote $h_n(s) = \inf \left\{ q \cdot f_k(s) \mid k \ge n \right\}$ and $h(s) = \lim_n h_n(s)$ = $\lim \inf_n q \cdot f_n(s)$. Using Proposition 1 for p = q one has: $\int h = q \cdot \int g \le q \cdot a$ and $\int g \in A$. By the condition of the proposition $q \cdot \int g \ge q \cdot a$; so $\int h = q \cdot a$. For each $s \in S$, $h_n(s) \le q \cdot f_n(s)$ so $\int |q \cdot f_n - h_n| = \int (q \cdot f_n - h_n) = \int q \cdot f_n - \int h_n \to q \cdot a - \int h = 0$. Also as $\int |h - h_n| \to 0$, we get $\int |q \cdot f_n - h| \to 0$. Convergence in the mean implies the convergence of a subsequence a.e. Hence there is a subsequence (f_{n_k}) such that a.e. $q \cdot f_{n_m}(s) \to h(s)$. Consequently for a.e. $s \in S$ and each $x \in \text{Lim Sup}_k \left\{ f_{n_k}(s) \right\}$, $q \cdot x = h(s)$. Integrating over S completes the proof. Q.E.D.

PROPOSITION 4. Let S be atomless and for each $s \in S$ let F(s) be a non-empty subset of R^d . Then $\int F$ is convex.

PROOF. This is an elementary theorem about integrals of correspondences due to Richter, [5]. (The proof appears also in [3], p. 369].) This theorem is a simple consequence of Lyapunov convexity theorem and will not be reproved here.

PROPOSITION 5. Let $a_{k,n} \in \mathbb{R}^d_+$ for $k, n = 1, 2, \cdots$ and assume that $\sum_{k=1}^{\infty} a_{k,n} \rightarrow a$ (where $n \rightarrow \infty$). Then there is a sequence $(b_k)_{k=1}^{\infty}$ such that $\sum_{k=1}^{\infty} b_k \leq a$ and for each $k, b_k \in \text{Lim Sup}_n \{a_{n,k}\}$. Moreover, if there is in addition, a sequence $(c_k)_{k=1}^{\infty}$ such that for each n and $k, a_{n,k} \leq c_k$ and $\sum_{k=1}^{\infty} c_k = c \in \mathbb{R}^d_+$, then $\sum_{k=1}^{\infty} b_k = a$.

REMARK. The first part of this proposition is exactly the statement of the lemma in case of a purely atomic measure space; the second part is related to Corollary 1 in §3.

PROOF. Reasoning by compactness, the sequence of sequences $((a_{k,n})_{k=1}^{\infty})_{n=1}^{\infty}$ has a pointwise converging subsequence $((a_{k,n_j})_{k=1}^{\infty})_{j=1}^{\infty}$, the limit of which we denote by $(b_k)_{k=1}^{\infty}$. Thus, for each k, $b_k = \lim_j a_{k,n_j}$ i.e. $b_k \in \text{Lim Sup}_n \{a_{k,n}\}$. We have to prove that $\sum_{k=1}^{\infty} b_k \leq a$. Assume the contrary, i.e. there is a coordinate i, an integer N and a number $\epsilon > 0$ such that $\sum_{k=1}^{N} b_k^i \geq a^i + \epsilon$. For each k let M_k be such that $n_j > M_k$ imply $b_k^i < a_{k,n_j}^i + \epsilon/2N$, and let M_0 be such that $n > M_0$ imply $\sum_{k=1}^{\infty} a_{k,n_k}^i < a^i + \epsilon/4$. Define $M = \max\{M_0, M_1, \cdots, M_N\}$. Then for $n_m > M$ one has: $\sum_{k=1}^{\infty} a_{k,n_m}^i \geq \sum_{k=1}^{N} a_{k,n_m}^i > \sum_{k=1}^{N} b_k^i - \epsilon/2 \geq a^i + \epsilon/2$, a contradiction.

Now assume the additional condition and apply the first part of the proposition to the sequence $((c_k - a_{k,n_j})_{k=1}^{\infty})_{j=1}^{\infty}$. Q.E.D.

A point x in a set B in R^d is called admissible if $x \ge y \in B$ imply x = y. If for $x \in B$ there exists a vector $p \gg 0$ such that for each $y \in B$, $p \cdot x \le p \cdot y$ then x is called *strictly admissible*. Of course, a strictly admissible point of a set is also admissible.

PROPOSITION 6. The admissible points of a closed convex set in R^d belong to the closure of the strictly admissible points of this set.

PROOF. This is a theorem of Arrow-Barankin-Blackwell, [1]. (I thank G. Debreu for this reference.)

PROPOSITION 7. Let S be atomless and set $A = \int \text{Lim Sup}_n\{f_n(s)\}\$. Then A is convex and $\overline{A} \cap Q_a \neq \emptyset$.

PROOF. The convexity of A is implied by Proposition 4. A is nonempty by Proposition 1. Assume that $\overline{A} \cap Q_a = \emptyset$. By Proposition 2 there is a vector $q\gg 0$ with

$$\inf\{q \cdot x \mid x \in A\} > q \cdot a \ (q \cdot a = \sup\{q \cdot x \mid x \in Q_a\}).$$

The last inequality contradicts Proposition 1. Q.E.D.

PROOF OF THE LEMMA. We decompose S to an atomless part and a purely atomic part. The lemma can be proved separately for each part. Proposition 5, as remarked above, proves the lemma for the purely atomic case. (One can assume, without a loss of generality, that in S there are at most \aleph_0 atoms.)

Now assume that S is atomless. We prove the lemma reasoning by induction on dim (A). $(A \text{ denotes the } \int \text{Lim Sup}_n \{f_n(s)\} \text{ and dim } (A)$ is the linear dimension of the smallest flat containing A.) By Proposition 7, dim $(A) \geq 0$ and if dim (A) = 0 then the lemma holds. Given $0 < l \leq d$ assume that the lemma holds when dim (A) < l and we shall prove it for the case dim (A) = l. The induction hypothesis states that for each sequence of integrable functions $g_n : S \rightarrow \mathbb{R}^d_+$ with $\int g_n \rightarrow b$ and dim $(\int \text{Lim Sup}_n \{g_n(s)\}) < l$ one has

$$\int \operatorname{Lim} \operatorname{Sup} \{g_n(s)\} \cap Q_b \neq \emptyset.$$

In view of Proposition 7 it is sufficient to prove that the admissible points of \overline{A} belong to A.

Claim 1. The strictly admissible points of \overline{A} belong to A.

Let $b \in \overline{A}$ and $q \gg 0$ such that $q \cdot b \geq q \cdot x$ for each $x \in \overline{A}$. If $b \in \text{rel-int } A$ then $b \in A$ because of the convexity of A. In the other case the origin is a boundary point of $A - \{b\}$ in the subspace $H - \{b\}$ of R^d , where H is the smallest flat containing A. Then there is $q' \neq 0$ in $H - \{b\}$ for which $q' \cdot x \geq 0$ for each $x \in A - \{b\}$ and for at least one point of $A - \{b\}$, say x_0 , $q' \cdot x_0 > 0$. Hence there is $\epsilon > 0$ such that defining $p = \epsilon q' + (1 - \epsilon)q$ we have: $p \gg 0$, $\forall x \in A$, $p \cdot x \geq p \cdot b$ and a strict inequality for at least one point of A. So

$$\dim(A \cap \{x \mid p \cdot x = p \cdot b\}) < l.$$

Let $y_n o b$ with $y_n o A$ for $n=1, 2, \cdots$. Hence there is a sequence of integrable functions (g_n) such that for each n, $\int g_n = y_n$ and a.e. $g_n(s) \in \text{Lim Sup}_k \{ f_k(s) \}$. Define $B = \int \text{Lim Sup}_n \{ g_n(s) \}$, then $B \subset A$ because a.e. Lim $\sup_n \{ g_n(s) \} \subset \text{Lim Sup}_n \{ f_n(s) \}$. In consequence $p \cdot x \geq p \cdot b$ for each $x \in B$ and $\dim(B \cap \{x \mid p \cdot x = p \cdot b\}) < l$. Now the conditions of Proposition 3 are fulfilled for (g_n) , B, b and p, hence there is a subsequence $(g_{nk})_{k=1}^{\infty}$ such that

$$\int \operatorname{Lim}_{k} \operatorname{Sup} \{g_{n_{k}}(s)\} \subset B \cap \{x \mid p \cdot x = p \cdot b\}.$$

The induction hypothesis completes the proof of the claim.

Claim 2. The admissible points of \overline{A} belong to A.

Denote by b an admissible point of \overline{A} . Because of Proposition 6 and Claim 1 there is a sequence (y_n) of strictly admissible points in A such that $y_n \rightarrow b$. Set (g_n) , B and H as in the proof of Claim 1. For each n there is a vector q_n with $q_n \cdot q_n = 1$ and $q_n \cdot x \geq q_n \cdot y_n$ for each $x \in A$. We may assume, in addition that for each n, $q_n \in H - \{y_n\}$. (Note that $H - \{y_n\} = H - \{b\}$ for each n.) Otherwise, we have for some n, that 0 is an interior point of $A - \{y_n\}$ in $H - \{y_n\}$, or equivalently: $y_n \in \text{rel-int } A$. But then, because y_n is a strictly admissible point of \overline{A} , it implies that each point of \overline{A} is strictly admissible and in this case Claim 2 is a consequence of Claim 1. Thus (q_n) has a limit point q in $H - \{b\}$. Assume, without loss of generality, that $q_n \rightarrow q$. For each $x \in A - \{b\}$, $q \cdot x \geq 0$ and dim $(\{x \in H - (b) \mid q \cdot x = 0\}) < l$. Hence, in order to complete the proof of the claim by the induction hypothesis, it is sufficient to show that for each $x \in B$, $q \cdot x = q \cdot b$.

Assume, per absurdum, that there is $x_0 \in B$ with $q \cdot x_0 > q \cdot b$. Because $b \in \overline{A}$ there is $z \in B$ with $q \cdot x_0 > q \cdot z$. Let h and g be two integrable functions such that: $x_0 = \int g$, $z = \int h$ and a.e. $g(s) \in \text{Lim Sup}_n \{g_n(s)\}$ and $h(s) \in \text{Lim Sup}_n \{f_n(s)\}$. As a consequence of the last inequality there is a nonnull set U defined:

$$U = \{ s \in S \mid q \cdot h(s) < q \cdot g(s) \}.$$

Consequently, for each $s \in U$ there are N(s) and $\epsilon(s) > 0$ such that for each n > N(s), $q_n \cdot h(s) < q_n \cdot g(s) + \epsilon(s)$. Because $g(s) \in \text{Lim Sup}_n \{g_n(s)\}$ there is n(s) > N(s), $s \in U$, such that $q_{n(s)} \cdot h(s) < q_{n(s)} \cdot g_{n(s)} \cdot g_{n(s)}(s)$. Since $U = \bigcup_{k=1}^{\infty} \{s \in U \mid n(s) = k\}$, there are k and a nonnull subset, V, of U such that for each $s \in V$, $q_k \cdot h(s) < q_k \cdot g_k(s)$. Define a function \hat{g} by: $\hat{g}(s) = h(s)$ for $s \in V$ and $\hat{g}(s) = g_k(s)$ for $s \notin V$. Then a.e. $\hat{g}(s) \in \text{Lim Sup}_n \{f_n(s)\}$ and $q_k \cdot \int \hat{g} < q_k \cdot \int g_k = q_K \cdot y_K$ —a contradiction. Q.E.D.

3. Corollaries. The first two corollaries were proved by Aumann [2], (with some restrictions on S). Our proof, based on the lemma, is shorter and simpler than his direct proof. These corollaries have direct application in mathematical economy [4], [6]. As to Corollary 4, it is natural to assume that it has a direct elementary proof but not as short as the one below.

COROLLARY 1. Let (f_n) be a sequence of integrable functions from S to R^d such that $\iint_n \to a$ and there is an integrable function g with $|f_n(s)| \le |g(s)|$ for a.e. $s \in S$ and $n = 1, 2, \cdots$. Then there is an integrable function f such that $\iint_n = a$ and a.e. f(s) is a limit point of f(s).

PROOF. As in the proof of the lemma, we can deal separately with each of the two cases: S is atomless, S is purely atomic. In the second case, Proposition 5 proves the corollary. We assume, for the rest of the proof, that S is atomless.

Let d_i ; $i=1, \dots, 2^d$ be the vectors in \mathbb{R}^d with coordinates 1 or -1. Define $d_i \nabla x$ to be the vector in \mathbb{R}^d the jth coordinate of which is $d_i^j x^j$ and define $e=(1,\dots,1)$. Then for each n and a.e. s, $d_i \nabla f_n(s) \leq e |g(s)|$, $i=1,\dots,2^d$. Now apply the lemma to $(e|g|+d_i \nabla f_n)_{n=1}^{\infty}$, $i=1,\dots,2^d$. For each i we get an integrable function h_i such that $d_i \nabla f h_i \leq d_i \nabla a$ and a.e. $h_i(s) \in \text{Lim Sup}_n \{f_n(s)\}$. So, using Proposition 4, we get: $a \in \int \text{Lim Sup}_n \{f_n(s)\}$. Q.E.D.

COROLLARY 2. For each s let $(F_n(s))$ be a sequence of nonempty subsets of R^d with the property: $x \in F_n(s)$ imply $|x| \leq g(s)|$, for some integrable function g. Then

$$\lim \sup_{n} \int F_{n} \subset \int \lim \sup_{n} F_{n}(s).$$

PROOF. Assume that $x \in \text{Lim Sup}_n \int F_n$. Then x is a limit point of a sequence (x_n) with $x_n \in \int F_n$. To simplicate notation assume that $x_n \to x$. $x_n \in \int F_n$ means that $x_n = \int f_n$ for an integrable function f_n with $f_n(s) \in F_n(s)$ a.e. By Corollary 1 there is an integrable function f with f = x and a.e. $f(s) \in \text{Lim Sup}_n \{f_n(s)\}$. Hence we completed the proof since a.e. Lim Sup_n $\{f_n(s)\} \subset \text{Lim Sup}_n F_n(s)$. Q.E.D.

COROLLARY 3. Let F be a closed-valued correspondence from S to R_+^a i.e. F(s) is a nonempty, closed subset of R_+^a , for each $s \in S$. Then $\int F$ contains all the admissible points of its closure.

PROOF. Let x be an admissible point of $\int F$. Then there is a sequence $x_n \rightarrow x$ with $x_n \in \int F$ for each n. It means that there is a sequence (f_n) of integrable functions with $f_n(s) \in F(s)$ a.e. for $n = 1, 2, \cdots$. By the

lemma there is an integrable function f with $\int f \leq x$ and a.e. $f(s) \in \text{Lim Sup}_n \{f_n(s)\} \subset F(s)$, where the inclusion is implied by the condition that F(s) is closed for each s. Hence $\int f \in \int F$ and because x is an admissible point, we get $\int f = x \in \int F$. Q.E.D.

COROLLARY 4. Let A be a closed set in R_+^a . Then conv (A) contains all the admissible points of its closure.

PROOF. Let S be an atomless probability measure space. (The word "Probability" means that the measure of S is 1.) Define F(s) = A for each $s \in S$. Then, by Corollary 3, the following claim completes the proof.

Claim 3. Let S be an atomless probability measure space and A in R^d . Then conv $(A) = \int F$, where F(s) = A for each $s \in S$.

By Proposition 4, conv $(A) \subset \int F$. The other inclusion can be easily proved by induction of the dimension and is left to the reader. Q.E.D.

REFERENCES

- 1. K. J. Arrow, E. W. Barankin and D. Blackwell, *Admissible points of convex sets. Contributions to the theory of games*. II, Ann of Math. Studies, no. 28, Princeton Univ. Press, Princeton, N. J., 1953, pp. 87-91. MR 14, 998.
- 2. R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12. MR 32 #2543.
- **3.** G. Debreu *Integration of correspondences*, Proc. Fifth Berkeley Sympos. Math. Stat. and Prob., Univ. of California Press, Berkeley, Calif., 1968, pp. 351–372.
- 4. W. Hildenbrand, Existences of a quasi-equilibrium for an economy with production and measure space of consumers (to appear).
- 5. H. Richter, Verallgemeinerung eines in der Statistik benötigten Satzes der Masstheorie, Math. Ann. 150 (1963), 85-90; and 440-441. MR 26 #3851.
- 6. D. Schmeidler, Competitive equilibria in markets with a continuum of traders and incomplete preferences, Econometrica (to appear).

HEBREW UNIVERSITY OF JERUSALEM