
FATOU'S LEMMA IN SEVERAL DIMENSIONS1

DAVID SCHMEIDLER

Abstract. In this note the following generalization of Fatou's

lemma is proved:

Lemma. Let {fn)n_l be a sequence of integrable functions on a mea-

sure space S with values in R+, the nonnegative orthant of a d-dimen-

sional Euclidean space, for which ffn—*aGiR+. Then there exists an in-

tegrable function f, from S to R+, such that a.e. f(s) is a limit point of

VnisV^and ff^a.

1. Introduction. When d = l, the result is a form of Fatou's lemma.

The assertion above is applied in mathematical economics [4].2 It

is also strongly connected with the theory of set valued functions [2]

or correspondences [3]. The nontrivial part of the arguments is lim-

ited to the case where 5 is an atomless measure space. In the purely

atomic case the lemma is reduced to a simple exercise in series. In any

case, the lemma cannot be proved by a successive application of

Fatou's lemma d times.

A few corollaries of the lemma are proved in §3.

2. Preliminary results and the proof of the lemma. Let (A„)„°=1 be

a sequence of (nonempty) subsets of Rd. We denote by Lim Sup„^4„

the set of all the limit points of the sequences (a„),T-i with anEAn,

» = 1, 2, • • ■ . Denote by x-y the inner product, Yt=i xlyl, in Rd.

Proposition 1. For each p55>0 there is an integrable function g such

that p-fg^p-a and a.e. g(s)GLimSup„{/„($)} and p-g(s)=lim

inf np-fn (s).

Proof. Define ft(s)=lim ininp-f„(s). As p-f„(s)-*p-a, by Fatou's

lemma fh^p-a. Now we decompose ft to d integrable components

g1. • • - . g* such that a.e. p-g(s) =h(s).

Define:

gl(s) = inf {fl(s) \k^n   and   p-fk(s) < h(s) + 1/n}.

For each rER1 and w = l, 2, • • ■  one has
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{s\gl(s) < r} =   U   ({s\fl(s) < r} C\ {s\ p-fk(s) < h(s) + 1/n}).
k^n

Hence (g\) is a monotone sequence of measurable functions, each

bounded   by   the   integrable   function   (l/pl)(h-\-l).   Define   gl(s)

= lim„ g]„(s) then g1 is an integrable function and a.e. p1g1(s)^h(s)

and g1(s)ELim Sup„ {f'n(s)}.

Proceed by induction:

gl(s) = ini{f'k(s) \k^n and p -fk(s) < h(s) + 1/n

andfk(s) < g'(s) -f- l/n,j = 1, ■ • • , i - l}.

It is easy to check that gn(s) is well defined and g*(s) = lim„ g*n(s)

is an integrable function with 2~lUi P'g'(s) =h(s) and (g*(s), • ■ • ,g'(s))

(ELim Sup„ {(f„(s), • • • , fi(s))} a.e. After d steps we have g(s)

= (g1(5). • • •, gd(s)) such that a.e. p-g(s)=h(s) and g(s)ELimSup„

{/„(*)}.    Q.E.D.
Denote: Qv= {xER+\x^y}, y£Ad+.

Proposition 2. Let A be a closed, convex subset of Rd+ and yER+

such that AC\Qy = 0. Then there is q^>0 with

sup{q-x\ x E Qy} < ini{q-x\ x E A}.

Proof. By the separation theorem there are p and a such that

p-x<a<p-z for all xEQy and all zEA. Let p' be the vector obtained

from p by substitution of zero for each negative coordinate of p. For

xEA, x^O so p'-x^p-x>a. For xEQy let x' denote the vector ob-

tained from x by substitution of zero for those coordinates which we

changed previously in p. Of course, x'EQy, so p' ■ x = p■ x' <a. Denote

by ps the vector obtained from p' by substitution of 5>0 for each

zero in p'. Again for each x£^4 ps-x^p'-x>a. For xEQy one has

ps-x^p'-x+d8<a-\-d8. Because of the compactness of Qy there is a

6'>0 such that q = ps- fulfills the requirements of the proposi-

tion.    Q.E.D.

For each s in 5 let F(s) be a nonempty subset of Rd.

Following [2] we define:

I  F = <  I  h I h is integrable and a.e. h(s) E F(s) >

Proposition 3. Let A =/Lim Sup„ {fn(s) } and g»0 such that for

each xEA, q-x^q-a. Then there is a subsequence (fnk)t-i of (/„) such

that for each x£/Lim Sup* {fnk(s)}, q-x = q-a.
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Proof. Denote hn(s) =ini {q-fk(s)\k^n} and h(s) =lim„ftn(s)

= lim inf„ q-fn(s). Using Proposition 1 for p = q one has: fh = q-fg

<ga and fgEA. By the condition of the proposition q-fg^q-a; so

fh = q-a. For each sES, hH(s)^q-fn(s) so f\q-fn-hn\ =/(?•/»—ft„)

= fa-fn-fhn->q-a-fh = 0. Also as /|ft-ft„|->0, we get f\q-fn-h\
—>0. Convergence in the mean implies the convergence of a subse-

quence a.e. Hence there is a subsequence (/„t) such that a.e. q-fn„(s)

—>h(s). Consequently for a.e. sES and each xGLim Sup* [fnk(s)},

q-x = h(s). Integrating over S completes the proof.    Q.E.D.

Proposition 4. Let S be atomless and for each sES let F(s) be a non-

empty subset of Rd. Then fF is convex.

Proof. This is an elementary theorem about integrals of corre-

spondences due to Richter, [5]. (The proof appears also in [3],

p. 369].) This theorem is a simple consequence of Lyapunov con-

vexity theorem and will not be reproved here.

Proposition 5. Let ak,„ER+ for k, w = l, 2, • • • and assume that

y.r,i ak,n—>a (where n—>oo). Then there is a sequence (bk)k=x such that

XXi bk-^a and for each k, ^GLim Supn {an,*}. Moreover, if there is

in addition, a sequence (cjt)*°-i such that for each n and k, an,k^ck and

H*™-i ck = cERd+, then  Yk= ih = a.

Remark. The first part of this proposition is exactly the statement

of the lemma in case of a purely atomic measure space; the second

part is related to Corollary 1 in §3.

Proof. Reasoning by compactness, the sequence of sequences

((a*,n)*'-i)n-i has a pointwise converging subsequence ((a*,n,)t°.i)y™i,

the limit of which we denote by ibk)k=1. Thus, for each k, bk = lirn,- ak,nj

i.e. £>*GLim Sup„{<!&,„}. We have to prove that / ;",i bk^a. Assume

the contrary, i.e. there is a coordinate i, an integer N and a number

e>0 such that X^-i b[^a'+e. For each k let Mk he such that n,> Mk

imply bik<aiki„.+e/2N, and let M0 he such that n> M0 imply 2~2*"-i a*.»

<a'+e/4. Define M=max{M0, Mu ■ ■ ■ , MN}. Then for nm>M

one has: XXi a*,»m= 2Xi aU»> Yt-i b\-e/2 £a'+e/2, a contra-

diction.

Now assume the additional condition and apply the first part of

the proposition to the sequence Hck— ak,n/)k~\)y°-i.    Q.E.D.

A point x in a set B in Rd is called admissible if x'SiyEB imply

x=y. If for xEB there exists a vector p^>0 such that for each yEB,

p-x^p-y then x is called strictly admissible. Of course, a strictly

admissible point of a set is also admissible.
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Proposition 6. The admissible points of a closed convex set in Rd

belong to the closure of the strictly admissible points of this set.

Proof. This is a theorem of Arrow-Barankin-Blackwell, [l]. (I

thank G. Debreu for this reference.)

Proposition 7. Let S be atomless and set A=jL.\m Supn{/n(s)}.

Then A is convex and AC\Qa7*0.

Proof. The convexity of A is implied by Proposition 4. A is

nonempty by Proposition 1. Assume that AC\Qa = 0. By Propo-

sition 2 there is a vector q^>0 with

inf{</-x| x E A} > q-a (q-a = sup{t?-x| x E Qa})-

The last inequality contradicts Proposition 1.    Q.E.D.

Proof of the lemma. We decompose S to an atomless part and a

purely atomic part. The lemma can be proved separately for each part.

Proposition 5, as remarked above, proves the lemma for the purely

atomic case. (One can assume, without a loss of generality, that in 5

there are at most N0 atoms.)

Now assume that S is atomless. We prove the lemma reasoning by

induction on dim (.4). (A denotes the /Lim Sup„ {fn(s)} and dim (A)

is the linear dimension of the smallest flat containing A.) By Proposi-

tion 7, dim (.4) ^0 and if dim (.4) =0 then the lemma holds. Given

0<l^d assume that the lemma holds when dim (A)<1 and we shall

prove it for the case dim (A) =1. The induction hypothesis states that

for each sequence of integrable functions g„: 5—>R+ with Jgn—*b and

dim (/Lim Sup„{gn(s) })<l one has

f UmSup{gn(s)} nQb 7* 0.
J n

In view of Proposition 7 it is sufficient to prove that the admissible

points of A belong to A.

Claim 1. The strictly admissible points of A belong to A.

Let bEA and c7»0 such that q-b^q-x for each xEA. If bErel-int

A then bEA because of the convexity of A. In the other case the

origin is a boundary point of A — {b} in the subspace H— {b} o(Rd,

where H is the smallest flat containing A. Then there is q'7*0 in

H— {b} for which g'-x^0 for each xEA— {b} and for at least one

point of A— {b}, say x0, <7'-x0>0. Hence there is e>0 such that

defining p=eq'-\-(l—e)q we have: £»0, VxEA, p-x^p-b and a

strict inequality for at least one point of A. So

dim(.4 n {x\ p-x = p-b}) < I.
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Let yn—*b with y„EA for n= 1, 2, ■ ■ • . Hence there is a sequence

of integrable functions (g„) such that for each n, Jgn = yn and a.e.

gnOO£Lim Sup* {/*($)}. Define B= /Lim Sup„{g„(s)}, then BEA be-
cause a.e. Lim Supn{g„(s)} £Lim Sup„ {/„($)}. In consequence

p-xstp-b for each xEB and dim(Br\{x\p-x=p-b})<l. Now the

conditions of Proposition 3 are fulfilled for (g„), B, b and p, hence

there is a subsequence (gnk)i-i such that

| LimSup{gnt0O} £ Bf~\ {x\ p-x = p-b}.
J k

The induction hypothesis completes the proof of the claim.

Claim 2. The admissible points of A belong to A.

Denote by b an admissible point of A. Because of Proposition 6

and Claim 1 there is a sequence (y„) of strictly admissible points in

A such that y„—>6. Set (gn), B and H as in the proof of Claim 1. For

each n there is a vector qn with qn-qn = ^ and qn-x~^qn-yn for each

x£^4. We may assume, in addition that for each n, qnEH— {y„}.

(Note that H— {yn} =H— {b} for each n.) Otherwise, we have for

some n, that 0 is an interior point of A — {yn} in H— {yn}, or equiva-

lently: y„£rel-int A. But then, because yn is a strictly admissible

point of A, it implies that each point of A is strictly admissible and

in this case Claim 2 is a consequence of Claim 1. Thus (qn) has a limit

point q in H— {b}. Assume, without loss of generality, that qn—*q.

For each xEA — {b}, q-x^0 and dim ([xEH—(b)\q-x = 0})<l.

Hence, in order to complete the proof of the claim by the induction

hypothesis, it is sufficient to show that for each x£J5, q-x = q-b.

Assume, per absurdum, that there is x0£5 with q-Xo>q-b. Because

bEA there is zEB with q-x0>q-z. Let h and g be two integrable func-

tions such that: x0 = /g, z=fh and a.e. g(s)£Lim Sup„ {gn(-s)} and

h(s) £Lim Sup„ {fn(s)}. As a consequence of the last inequality there

is a nonnull set U defined:

U= {sES\q-h(s) <q-g(s)}.

Consequently, for each sE U there are N(s) and e(s) >0 such that for

each»> A(s), qn-h(s) <qn-g(s)+e(s). Because g(s)£Lim Sup„ {g„(s)}

there is n(s)>N(s), sEU, such that qn(*)-h(s)<qnwgn(s)(s). Since

U — l)k,i {sE U\ n(s) =k}, there are k and a nonnull subset, V, of U

such that for each sE V, qk-h(s)<qk-gk(s). Define a function g by:

g(s)=h(s) for sEV and g(s)=gk(s) for s£F. Then a.e. |(s)£Lim

Sup„{/„(s)}   and   g,*-/g<g*-/g*=cjK-yK—a  contradiction.    Q.E.D.
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3. Corollaries. The first two corollaries were proved by Aumann

[2], (with some restrictions on S). Our proof, based on the lemma, is

shorter and simpler than his direct proof. These corollaries have

direct application in mathematical economy [4], [6]. As to Corollary

4, it is natural to assume that it has a direct elementary proof but not

as short as the one below.

Corollary 1. Let (/„) be a sequence of integrable functions from S

to Rd such that ffn—*a and there is an integrable function g with \fH(s) \

= |g(5)| for a-e- sES and « = 1, 2, • • • . Then there is an integrable

function f such that ff = a and a.e. f(s) is a limit point of (fn(s)).

Proof. As in the proof of the lemma, we can deal separately with

each of the two cases: 5 is atomless, 5 is purely atomic. In the second

case, Proposition 5 proves the corollary. We assume, for the rest of

the proof, that 5 is atomless.

Let dc,i = l, ■ • • , 2d be the vectors in Rd with coordinates 1 or — 1.

Define dtVx to be the vector in Rd the/th coordinate of which is d\x>

and define e=(l, • • • , 1). Then for each n and a.e. s, diVfn(s)

^e\g(s)\, * = 1, • • • , 2d. Now apply the lemma to (e\g\ 4-d,-V/B)"_„

* = 1, • • • , 2d. For each i we get an integrable function ft,- such that

diVfhi^diVa and a.e. ft<(.s)GLim Sup„{/„(s)}. So, using Proposition

4, we get: aG/Lim Sup„ {f„(s)}.    Q.E.D.

Corollary 2. For each s let (Fn(s)) be a sequence of nonempty subsets

of Rd with the property: xEFn(s) imply \x\ ^g(s) |, for some integrable

function g. Then

Lim Sup I  Fn C j  LimSupFB(s).
n     J J n

Proof. Assume that xGLim Supn/Pn. Then x is a limit point of a

sequence (x„) with xnEfFn. To simplicate notation assume that

xn—*x. XnEfFn means that xn=ffn for an integrable function/„ with

fn(s)EFnis) a.e. By Corollary 1 there is an integrable function/ with

ff = x and a.e./(s)GLim Sup„ \fn(s)}. Hence we completed the proof

since a.e. Lim Sup„ {fnis)} CLim Sup„P„(s).    Q.E.D.

Corollary 3. Let F be a closed-valued correspondence from S to P+

i.e. Fis) is a nonempty, closed subset of Rd+, for each sES. Then JF

contains all the admissible points of its closure.

Proof. Let x be an admissible point of /P. Then there is a sequence

xn—*x with x„GJF for each n. It means that there is a sequence (/„)

of integrable functions with/„(s)GP(s) a.e. for » = 1, 2, • • • . By the
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lemma there is an integrable function / with ff^x and a.e. f(s)

GLim Sup„ {f»(s)} EF(s), where the inclusion is implied by the

condition that F(s) is closed for each s. Hence ffEfF and because x

is an admissible point, we get ff = xEfF.    Q.E.D.

Corollary 4. Let A be a closed set in P^.. Then conv (A) contains

all the admissible points of its closure.

Proof. Let 5 be an atomless probability measure space. (The word

"Probability" means that the measure of 5 is 1.) Define F(s) =A for

each sES. Then, by Corollary 3, the following claim completes the

proof.

Claim 3. Let 5 be an atomless probability measure space and A in

Rd. Then conv (A) =fF, where F(s) =A for each sES.

By Proposition 4, conv (A)EfF. The other inclusion can be easily

proved by induction of the dimension and is left to the reader.    Q.E.D.

References

1. K. J. Arrow, E. W. Barankin and D. Blackwell, Admissible points of convex

sets. Contributions to the theory of games. II, Ann of Math. Studies, no. 28, Princeton

Univ. Press, Princeton, N. J., 1953, pp. 87-91. MR 14, 998.
2. R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965),

1-12. MR 32 #2543.

3. G. Debreu Integration of correspondences, Proc. Fifth Berkeley Sympos. Math.

Stat, and Prob., Univ. of California Press, Berkeley, Calif., 1968, pp. 351-372.

4. W. Hildenbrand, Existences of a quasi-equilibrium for an economy with produc-

tion and measure space of consumers (to appear).

5. H. Richter, Verallgemeinerung eines in der Statistik benbtigten Satzes der Mass-

theorie. Math. Ann. 150 (1963), 85-90; and 440-441. MR 26 #3851.
6. D. Schmeidler, Competitive equilibria in markets with a continuum of traders and

incomplete preferences, Econometrica (to appear).

Hebrew University of Jerusalem


