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Introduction. Only functions from the interval 1= [0, l] into I

will be considered in this paper, and no distinction will be made be-

tween a function and its graph. For real functions / from / into I,

the property of connectivity is intermediate to that of continuity

and the Darboux property, and is equivalent to the property of /

being a connected set in the plane. For some connectivity functions

g from I into I, it can be observed that there is a subset Af of /

such that every function from / into I which agrees with g on 7 —Af

is a connectivity function (in this case, M will be said to be g-negli-

gible). For example, if Af is a Cantor subset of I and g is a function

from I into I such that if x belongs to some component (a, b) of

I— M, g (x) = | si n {cot [tr (x — a) / (b — a ]} |, then M is g-negligible. The

following theorems will be proved:

Theorem 1. If M is a subset of I, then the following statements are

equivalent:

(i) there is a connectivity function g from I into I such that M is

g-negligible, and

(ii) every subinterval of I contains c-many points of I—M (c denotes

the cardinality of the continuum).

Theorem 2. If g is a connectivity function from I into I, then the

following statements are equivalent:

(i) g is dense in I2,

(ii) every nowhere dense subset of I is g-negligible, and

(iii) there exists a dense subset of I which is g-negligible.

"Nowhere dense" cannot be replaced with "countable" in (ii), but the

following is true:

Theorem 3. There exists a connectivity function g from I into I

such that every subset of I which has cardinality less than c is g-negligible.

It follows from Theorem 1 that there is a connectivity function g

from I into I such that there is a g-negligible set M of length one.

However, since well-ordering techniques are used in the proof of

Theorem 1, it might be difficult to imagine what such a function is

actually like. Therefore, an effective example will be given of a con-
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nectivity function g from / into / for which there is a g-negligible

set of length one. In proving that this example is a connectivity func-

tion, a fairly general construction theorem will be established, which

may prove useful in the future construction of pathological connec-

tivity functions.

Proofs of theorems. Several of the proofs given will rely on the

following lemma which is an immediate corollary to the theorem in

[l]. A brief outline of a direct proof is given.

Lemma. Suppose f is a function from I into I such that if g is a lower

semicontinuous function from I into I and J is a subinterval of I, then

f and g agree at some element of J. Then f is a connectivity function.

Outline of Proof. Suppose/ is not a connectivity function. Then

/ is the union of two mutually separated sets h and k and there are

mutually exclusive open subsets U and V of I2 which contain h and

k, respectively. The projections of U and V onto / are open and their

union is /, so these projections have an element x in common. There

is an interval [p, q] which contains x such that for some two numbers

a and b, the interval with endpoints (p, b) and iq, b) is a subset of U

and the interval with endpoints ip, a) and iq, a) is a subset of V.

Assume that a<b. Then the function g defined by giy) —mp\t\ the

interval with endpoints (y, a) and (y, /) is a subset of V} if y is in

[p, q], and giy) = l otherwise, is lower semicontinuous, and g\ [p, q]

is a subset of the boundary of V and does not intersect/, contrary to

hypothesis.

Proof of Theorem 1. Suppose M is a subset of / such that every

subinterval of / contains c-many points of I — M. There is a collec-

tion W of mutually exclusive subsets of I — M such that W has

cardinality c and each set in W is dense in I. Let P be a reversible

transformation from W onto the collection S of all lower semicon-

tinuous functions from / into I. Let g be a function from / into /

such that if x belongs to some element w of W and h = Tiw), then

g(x)=&(x). Clearly, any function/ from / into I which agrees with

g over I — M will have the property that if h is a lower semicontin-

uous function from / into / and / is a subinterval of I, then/ and h

agree at some element of /. Thus, M is g-negligible.

Now, suppose M is a subset of I, [a, b] is a subinterval of / which

does not contain c-many points of I — M, and g is a function from /

into I. There is a number t between 0 and 1 which is not in {g(x)|x

is in [a, b]— M}. Let/ be a function from /into /which agrees with

g over /— M and has the property that if x is in M, then/(x) =t/2 if

x^ia+b)/2 and/(x) = (/ + l)/2 if x>(a+b)/2. Let x and y be eie-
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ments of [a, b]C\M such that x<(a+&)/2 and y>(a+b)/2. f is

separated by the set which is the union of the interval from the point

(x, t) to (y, t), the vertical ray extending upward from (x, t), and the

vertical ray extending downward from (y, t). Therefore Af is not

g-negligible.

Proof of Theorem 2. To show that (i) implies (ii), suppose g

is a connectivity function from / into I which is dense in I2, Af is a

nowhere dense subset of /, and / is a disconnected function from I

into / which agrees with g over I—M. Assume f = HVJK, where H

and A are mutually separated subsets of P. Let A = Cl(Af). The re-

striction f\ C of / to any component C ol I — N is g\ C and is therefore

connected and lies entirely in H or entirely in A. Suppose C is a

component of I — N and that/| C lies in H. Suppose there is a com-

ponent D of I — N such that/| D lies in A. Assume D is to the right

of C. The least upper bound of the set |x|x is greater than the left

end a of C, and if a<y<x and y belongs to a component A of I — N,

then/| E lies in H} is a number y such that either

(1) the point (y,f(y)) is in A and y is a limit number of the union

of all components E of I — N such that/| E lies in H or

(2) the point (y,f(y)) is in H and y is a limit number of the union

of all components E of I - N such that/| E lies in A.

Notice that if, contrary to earlier supposition, there is no component

D of I — N such that/| D lies in K, then there will exist a number y

with property (1). Assume y has property (1) and suppose «>0.

Let A be a component of I — N such that/|£ lies in H and E has

elements that lie within e of y. Then the ^neighborhood R of the

point (y,f(y)) intersects the set EX I, and since/| E is dense in EX I,

R contains a point of/|£. This means that (y,f(y)) is a limit point

of H, which is a contradiction. A similar contradiction occurs if y

has property (2), so (i) implies (ii).

It is easily seen that (ii) implies (i) and (iii) implies (i), for suppose

A is a circular region lying in I2 which contains no point of the con-

nectivity function g from / into I, and suppose Af is a dense subset

of I. There is an element x of Af which is the abscissa of a point (x, t)

of R. The function/ from / into / which agrees with g on I— {x}

and is such that/(x)=/ is not a connectivity function. Thus Af is

not g-negligible, and {x} is a nowhere dense subset of I which is not

g-negligible.

Now, suppose g is a connectivity function from I into I which is

dense in I2. LetH= {x\ g(x) = 1/2} and suppose there is a subinterval

J oi I which contains no element of H. There is an element x of /

such that g(x) > 1/2 and an element y oi J such that g(y) < 1/2. g is
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separated by the set which is the union of the interval from the point

(x, 1/2) to (y, 1/2), the vertical ray extending downward from (x, 1/2)

and the vertical ray extending upward from (y, 1/2). This is contra-

dictory, so H must be dense in /. Then H=M\JK, where M and K

are mutually exclusive and dense in / and M is countable. Suppose

/ is a function from / into / which agrees with g on / — M, and/ = A WP

where A and B are mutually separated. Let V and W be mutually

exclusive open sets such that A is a subset of V and P is a subset of

W. Suppose there is a region P lying in VCM2 which contains no points

of/ with abscissa in I — M. Then since M is countable, there will be

numbers x, y, and t such that tj^l/2, the interval from (x, t) to (y, t)

lies in R and contains no point of/ or g, and g(x)>t and giy)<t. g

would be disconnected by a set similar to those described before.

Therefore V and, for similar reasons, W both contain points of /

with abscissa in I — M. Since K is dense in /, the set N= [x\x is in

M and the point (x, 1/2) is not in WJ W} is nowhere dense. But the

function h from / into / which agrees with f on N and agrees with

g on I—N lies in V^JW, contains a point of V and a point of W, and

is therefore disconnected. This means that A is a nowhere dense sub-

set of / which is not g-negligible. This is a contradiction, so (i)

implies (iii).

The phrase "nowhere dense" cannot be replaced by the word

"countable" in (ii) because the example described by J. L. Cornette

on pp. 190 and 191 of [3] is a connectivity function g from / into /

which is dense in P, but the countable set {x|x = m/2n for some posi-

tive integer n and some nonnegative integer m^2n} is not g-negli-

gible.
Proof of Theorem 3. Let P be the function defined in the proof

of Theorem 3 of [2]. The function/ from / into / defined by fit)

= Fit) if Fit) is in /, and fit) =0 otherwise, will have the desired

properties.

Description of the example. Let M(l) be the middle third Cantor

subset of /, and for each integer n>l, let M(n)= {x\x belongs to

M(n — 1) or to the middle third Cantor subset of the closure of some

component of I — M(n — 1)}. If e is a number between 0 and 1 and

(c, d) is a segment, then the segment (c-\-(d — c)(l — e)/2, d — id — c)

(1 -e)/2) shall be called the "middle cth of (c, d)". Let rx, r2, ■ ■ ■ be

a sequence of numbers in / such that each element of / is the sequen-

tial limit of some subsequence of n, r2, ■ ■ ■ . Let /i, /»,••• be a

sequence of functions from / into / with the following properties:

(i) /i is continuous on /, constant on each component of I—M(l),

and/i(x) =ri if x is in the middle (1 —1/2) th of /, and
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(ii) if n is an integer greater than l,/„ agrees with/„_i on M(n — 1),

is constant on each component of I—M(n), and if C is a component

of I — M(n — 1), then/„ is continuous on C1(C) and/„(x) =ra if x is

in the middle (1 - l/2n)th of C.

Let Af = jx| there is a positive integer n such that if j is an integer

greater than n,f,(x) = r,}. Af has length one because if for each posi-

tive integer n, H„= {x\x is not in the middle (1 —l/2")th of a com-

ponent of I — M(n)}, then

00 OS

k = n u Hi
;=i i-i

has length zero, and I — K is a subset of Af. Let g be a function from

J into I such that if x is in Af, g(x) =0, and if x is in I —Af, g(x) is the

sequential limit of some subsequence of /i(x), /2(x), • • • . Since each

element of I is the sequential limit of some subsequence of r\, r2, • • ■ ,

then every function / from / into / which agrees with g on I — M

would satisfy the hypothesis of the following theorem, and would

therefore be a connectivity function.

Theorem 4. Suppose

(i) Af(l), Af(2), • • • is a monotonic increasing sequence of Cantor

subsets of I such that if j is a positive integer and C is a component of

I-M(j),thenC\(C)r\M(j+l)isaCantorset,andM(l)\JM(2)\J • • •

is dense in I, and

(ii) f\,f2, • • ■ is a sequence of functions from I into I such thatfi is

continuous on I and constant on each component of I—M(l), and if n

is an integer, n>l,fn agrees with /„_i on M(n — 1), is constant on each

component of I - M(n), and is continuous on the closure of each com-

ponent of I — M(n — 1).

Then if f is a function from I into I such that for each x in I, f(x) is

the sequential limit of some subsequence of fi(x), f2(x), ■ ■ ■ , f is a con-

nectivity function.

Proof of Theorem 4. Notice that if n is a positive integer,

f\ M(n) =fn\ M(n), and if e>0, there is a positive integer n such

that the length of each component of I — M(n) is less than e.

If n is a positive integer, the statement that a point set g is of

type n means that for each component C= (a, b) of I — M(n) there is

a connected point set Ac which contains (a, f(a)) and (b,f(b)), and

g = {Ac| C is a component of / — M(n)} *W [f\ M(n) ] (if G is a collec-

tion of sets, G* is the union of the sets in G). Suppose g is a point set

of type 1, and g = HKJK, where H and A are mutually separated. If

C and D are components of I — Af(l), then Ac lies entirely in H or
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in K, and if Ac and AD intersect, they both lie in H or they both lie

in K. Let H' be the set such that P belongs to H' ii and only if P

is in Hf~\ [f\ M(l)] or P is a point of/i with abscissa in a component

C of I-Mil) such that Ac lies in P. Let K'=fy-H'. Since/i is

continuous, H' and A' are not mutually separated, so assume P is a

point of H' which is a limit point of K'. P must be a point of/| M(l)

and therefore in H. There is a neighborhood P about P which con-

tains no point of K. R contains a point Q of K'. If Q has abscissa in

a component (a, b) of / —M(l), then (a, f(a)) is a point of K in P

or (b,f(b)) is a point of A in P, and if 0; has abscissa in M(l), then

Q is in A. Both of these possibilities are contradictions, so g is con-

nected.

Now, suppose n is an integer greater than 1 and g is a point set of

type n. If D is a component of / — M(n— 1), then the point set Bd

= {Ac\C is a component of C)(D)-M(n)} * U|/| Cl(P)fW(re)] is

connected for the same reasons sets of type 1 are connected, so g is of

type n — 1. Therefore, it follows inductively that if n is a positive

integer and g is of type n, then g is connected.

Suppose/ is as described in the theorem, but/ = PfWP, where H

and A are mutually separated. Let V and W be mutually exclusive

open sets containing Pf and K, respectively, and let Q = I2 — (VUW).

Let M = M(1)\JM(2)\J ■ ■ ■ . Suppose f\ M lies entirely in V. Let x

be an element of I — M such that (x,f(x)) is in K. For each positive

integer n, let (a„, bn) be the component of I — M(n) which contains x.

For each positive integer n, fH is constant on each component of

I — M(n), so the point (x, f(x)) is the sequential limit point of some

subsequence of the point sequence (ax,fi(ai)), (a2,f(a2)), • • ■ , and this

is a contradiction because the points in that sequence are in H. There-

fore,/! M contains a point of H and a point of K, and there is a positive

integer n such that/| M(n) does not lie entirely in one component of

VKJW. Suppose that for each component C=(a, b) of I—M(n),

(a,f(a)), and (b,f(b)) belong to the same component U of VVJW, and

Ac is an arc with ends (a, f(a)) and (b, f(b)) which lies in U. Then,

the set {Ac\ C is a component of I—M(n)} * \J [f \ M(n)] would be a

connected subset of VVJ W which does not lie entirely in a single com-

ponent of V\JW, and this is a contradiction. Thus, there is a compo-

nent (au bi) oi I — M(n) such that (ai,f(ai)) and (bi,f(bi)) lie in differ-

ent components of VVJW (the interval between them will intersect

Q). Thus, a sequence (ai, h), (a2, b2), • • • can be defined so that if j

is an integer greater than 1, (a,-, bf) is a component of I—M(n+j — l)

such that aj-i<aj<bj<bj-i, and (aj,/(fly)) and (bj,f(bf)) lie in differ-
ent components of VUW (the interval between them will intersect
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Q). Let x be the element common to the segments (ai,bi), (a2, b2), • • • .

f(x) must be the sequential limit of some subsequence of /i(x),

/afx), • • • . But since for each positive integer n,f„ is constant on each

component of I — M(n),f(x) is also the sequential limit of some sub-

sequence of f(ai),f(a2), ■ ■ ■ . However, if Ci, c2, ■ ■ ■ is a subsequence

of ai, a2, - • • such that/(x) is the sequential limit off(ci),f(c2), • • • ,

then the point (x, f(x)) is the sequential limit point of the point se-

quence (ci,/(ci)), (d, f(c2)), • • • , and this point sequence must con-

verge to a point of Q. This is a contradiction, so the theorem is proved.
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