A SEQUENTIALLY CLOSED COUNTABLE DENSE SUBSET OF I^{\prime}

W. M. PRIESTLEY

Let I denote the closed unit interval, N the positive integers, and R the reals. By I^I we mean the collection of all functions x = x(t) from I into I with the product topology. A sequentially closed set in I^I , i.e., a set containing all its sequential limits, is not in general closed, I^I not being first countable. In fact, there are proper subsets of I^I that are sequentially closed and dense, e.g.,

$$\{x \in I^I \mid x \text{ is Lebesgue measurable}\}$$

and

$$\{x \in I^I \mid x^{-1}(I \setminus \{0\}) \text{ is countable}\}.$$

These sets have cardinality 2^c and c, respectively. In [5], we raised the question of the existence of a *countable* such set. We here answer this question affirmatively by showing that I^I contains a countable dense subset that contains no nontrivial convergent sequences at all. Separability of I^I is well known, and follows, for instance, from a more general result of Pondiczery [4] (see also Marczewski [3]).

Let $J \subset R$ be a maximal subset of irrationals linearly independent over the integers. Since J and I have the same cardinality, I^I and I^J are homeomorphic, and so our goal will be reached by exhibiting a countable dense subset of I^J having no nontrivial convergent sequences in it. Let S be the set $\{x_n\}_{n\in N}$ in I^J such that

$$x_n(t) = (nt)$$
 for all $t \in J$,

where (r), for $r \in \mathbb{R}$, denotes the number in [0, 1) congruent to r modulo 1. The fact that S is dense in I^J follows directly from Kronecker's well-known theorem regarding the simultaneous approximation mod 1 of arbitrary real numbers by integral multiples of linearly independent irrationals [2, Chapter XXIII].

Now consider any convergent sequence $\{x_{n_k}\}$ of elements of S. Then $\{x_{n_k}(t)\}$ converges for each $t \in J$. For $t \in R$, there exist, by the maximality of J, finitely many integers m_i such that $m_0t = m_1 1 + \sum_{i \geq 2} m_i t_i$ for some $t_i \in J$. Therefore $(m_0 n_k t) = (\sum_{i \geq 2} m_i x_{n_k}(t_i))$, implying that [if we agree to identify 0 and 1] the sequence $\{(m_0 n_k t)\}$ converges as $k \to \infty$. This in turn implies that $\{(n_k t)\}_{k \in N}$ has only

finitely many [in fact, at most $m_0 = m_0(t)$] limit points in I for each $t \in \mathbb{R}$. This is impossible unless $\{n_k\}_{k \in \mathbb{N}}$ is finite, since otherwise $\{(n_k t)\}_{k \in \mathbb{N}}$ is dense in I for almost all $t \in \mathbb{R}$ by a theorem of Hardy and Littlewood [1, Theorem 1.40]. That completes the proof.

The index set J in the above proof may be of measure zero, since $J \cup \{1\}$ is a Hamel basis of the reals over the rationals, and there exist Hamel bases of measure zero [6]. For this reason the Hardy-Littlewood theorem could not be applied directly to our situation. We could have avoided this slight holdup by initially choosing a nonmeasurable J. Such a J exists, since there exists a Hamel basis which is not a Lebesgue measurable set [6]. The only measurable Hamel bases have measure zero [6].

REFERENCES

- 1. G. H. Hardy and J. E. Littlewood, Some problems of diophantine approximation, Acta Math. 37 (1914), 155-239.
- 2. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 3rd ed., Clarendon Press, Oxford, 1954. MR 16, 673.
- 3. E. Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math. 34 (1947), 127-143. MR 9, 98.
- 4. E. S. Pondiczery, Power problems in abstract spaces, Duke Math. J. 11 (1944), 835-837. MR 6, 119.
- 5. W. M. Priestley, Nets and sequences, an example, Amer. Math. Monthly 75 (1968), 1098-1099.
- 6. W. Sierpiński, Sur la question de la mesurabilité de la base de M. Hamel, Fund. Math. 1 (1920), 105-111.

University of the South