IRREGULAR INVARIANT MEASURES RELATED TO HAAR MEASURE

H. LEROY PETERSON

ABSTRACT. Let G be a locally compact nondiscrete group, and let ν_1 be a Haar measure on an open subgroup of G. It is not hard to show that ν_1 must be the restriction of a Haar measure ν on all of G. Here we show that there exists a translation invariant measure μ (found by extending ν_1 to the cosets of H in a natural way) which agrees with ν on, for example, (ν) σ -finite sets, open sets, and subsets of H. Although ν can be computed from μ in a relatively simple manner, the two measures are not equal in general. In fact, there is an extreme case, namely when H is not σ -compact and has uncountably many cosets, in which μ fails very badly to be regular—there are closed sets on which μ is not inner regular and (other) closed sets on which μ is not outer regular. One condition sufficient for this extreme case to be possible is when G is Abelian and not σ -compact.

1. Definitions and notation. Let μ be a (nonnegative, countably additive) measure defined on a σ -algebra M of subsets of a topological space X. If S is in M, we say that μ is inner regular on S if

$$\mu S = \sup \{ \mu C : C \in M, C \text{ compact}, C \subset S \}.$$

We say that μ is outer regular on S if

$$\mu S = \inf \{ \mu U : U \in M, U \text{ open, } U \supset S \}.$$

Following [2, 11.34], we say that μ is regular if it is outer regular on every set in M and inner regular on every open set in M, and if every compact set in M has finite measure.

By Haar measure on a locally compact group G, we mean a left Haar measure as defined in, e.g., [2]; that is to say, a left-translation invariant, regular, nondegenerate measure on a σ -algebra M(G) of subsets of G. M(G) contains all the closed subsets of G and consists of all the sets which are measurable with respect to the Carathéodory outer measure associated with the measure.

If H is a subgroup of G (not necessarily normal), G/H denotes the space of left cosets of H in G. If S is a set, P(S) denotes the collection of all subsets of S; |S| denotes the cardinality of S.

Received by the editors March 19, 1969 and, in revised form, July 28, 1969.

AMS Subject Classifications. Primary 2220, 2875; Secondary 2030, 2210, 2810, 2813

Key Phrases. Locally compact group, Abelian group, translation-invariant measure, regular measure, σ -compact space.

2. Lemma 1. Let X be a Hausdorff space, (X, M, μ) a measure space, with $\mu C < \infty$ for all compact $C \in M$ and μ inner regular on $S \in M$ whenever $\mu S < \infty$. Let

$$\lambda S = \sup \{ \mu C \colon C \text{ compact, } C \in M, C \subset S \},$$

$$\nu S = \inf \{ \mu U \colon U \text{ open, } U \in M, U \supset S \},$$

for all $S \in M$. Then

- (1) $\lambda S = \mu S = \nu S$ whenever $\nu S < \infty$,
- (2) λ and ν are measures.

PROOF. (1) Suppose $\nu S < \infty$. Let V be a G_{δ} set such that $S \subset V$ and $\nu S = \mu V$. If C is a compact member of M with $C \subset V - S$, then $S \subset V - C \subset V$. Now V - C is a G_{δ} set so $\mu(V - C) = \nu S = \mu V$, thus $\mu C = 0$. Hence $\mu(V - S) = 0$, and $\mu S = \mu V = \nu S$; $\lambda S = \mu S$ is obvious since $\mu S < \infty$.

(2) Suppose $\{S_j: j=1, 2, \cdots\} \subset M$ and $S_j \cap S_k = \emptyset$ $(j \neq k)$. Let $S = \bigcup S_j$, let C be a σ -compact subset of S such that $\lambda S = \mu C$ and (for each j) let C_j be a σ -compact subset of S_j with $\mu C_j = \lambda S_j$. Then

$$\lambda S = \mu C = \mu(\bigcup C \cap S_i) = \sum \mu(C \cap S_i) \leq \sum \lambda S_i$$

and

$$\lambda S \ge \mu(\bigcup C_i) = \sum \mu C_i = \sum \lambda S_i,$$

hence λ is a measure. Clearly (by (1)),

$$\nu S = \mu S = \sum \mu S_j = \sum V S_j$$

if $\nu S < \infty$. If $\nu S = \infty$, take U_j a G_δ set such that $U_j \supset S_j$ and $\nu S_j = \mu U_j$ $(j = 1, 2, \cdots)$. Then

$$\sum \nu S_j = \sum \mu U_j \ge \mu(\bigcup U_j) \ge \nu S = \infty,$$

thus ν is a measure.

Lemma 2. Let G be a locally compact group, H an open subgroup of G. Then $M(H) = M(G) \cap P(H)$.

PROOF. Let ν be a Haar measure on G and ν_1 a Haar measure on H. Both ν and ν_1 are unique to within a multiplicative constant; further, if U is an open subset of H with compact closure, then $0 < \nu U < \infty$ and $0 < \nu_1 U < \infty$. Thus we may assume that $\nu U = \nu_1 U$; but then the Carathéodory outer measures associated with ν and ν_1 , respectively, are equal on P(H). It follows that the ν -measurable and ν_1 -measurable subsets of H coincide, which is to say that $M(H) = M(G) \cap P(H)$.

Note. The proof of Lemma 2 contains the information that there is a one-to-one correspondence between the Haar measures on G and H, respectively, given by $\nu \leftrightarrow \nu_1 = \nu \mid M(H)$. One by-product of Theorem 1 will be a method of computing ν , given ν_1 .

THEOREM 1. Let G be a nondiscrete locally compact group, let H be an open subgroup of G, and ν_1 a left Haar measure on H. For $S \subseteq M(G)$, define

$$\mu S = \sum \{ \nu_1(xS \cap H) \colon xH \in G/H \},$$

$$\nu S = \inf \{ \mu U \colon U \text{ open, } U \supset S \}.$$

Then

- (1) μ is a well-defined left-invariant measure on M(G).
- (2) v is a Haar measure for G.
- (3) μ and ν are both extensions of ν_1 and μ and ν agree on open sets and (ν) σ -finite sets.
- (4) If H is not σ -compact, μ fails to be inner regular on some closed subsets of G.
- (5) If G/H is uncountable, μ fails to be outer regular on some closed subsets of G.

PROOF. (1) We know that if $S \in M(G)$, then $xS \in M(G)$ and therefore $xS \cap H \in M(G) \cap P(H) = M(H)$ for all $x \in G$. Further, if xH = yH, then

$$\nu_1(xS \cap H) = \nu_1(yx^{-1}xS \cap H) = \nu_1(yS \cap H),$$

since ν_1 is left invariant. Thus μ is well defined; it is clearly left-invariant. To show that μ is a measure, suppose $\{S_j\} \subset M(G)$, $S_j \cap S_k = \emptyset$ $(j \neq k)$; then

$$\mu(\bigcup S_j) = \sum \nu_1(\bigcup x S_j \cap H) = \sum \left(\sum_{j=1}^{\infty} \nu_1(x S_j \cap H)\right)$$
$$= \sum_{j=1}^{\infty} \left(\sum \nu_1(x S_j \cap H)\right) = \sum_{j=1}^{\infty} \mu S_j$$

(by standard arguments; either both double summations have uncountably many nonzero terms or the l_1 version of Fubini's theorem applies).

(2) Let $S \in M(G)$, with S open or $\mu S < \infty$. There is a countable set $\{x_j\}$ such that $\mu S = \sum_{j=1}^{\infty} \nu_1(x_j S \cap H)$. For each j, there is a σ -compact set C_j such that $C_j \subset x_j S \cap H$ and $\nu_1 C_j = \nu_1(x_j S \cap H)$. Thus

$$\mu S = \sum \nu_1 C_j = \sum \mu(x_j^{-1} C_j) = \mu(\bigcup x_j^{-1} C_j) \le \lambda S \le \mu S,$$

where λ is as in Lemma 1, since $Ux_j^{-1}C_j$ is a σ -compact subset of S. Now Lemma 1 applies, so that ν is a regular measure defined on M(G); it is obvious that ν has the other properties required of a Haar measure.

- (3) This statement is obvious.
- (4) If H is not σ -compact, then (16.14) of [2] shows that there is a closed subset of H on which ν (and therefore μ) is not inner regular.
- (5) If G/H is uncountable, then an argument easily derived from the proof of (16.14) (op. cit.) shows that there is a closed subset F of G such that $\mu F = 0$ and $\nu F = \infty$; thus $\mu U = \infty$ for any neighborhood U of F and μ is not outer regular on F.

Notes on Theorem 1. I. Statements (4) and (5) each imply that G is not σ -compact. Theorems 2 and 3, below, state conditions under which (4) and (5) can be true for the same subgroup H.

- II. λ is the inner-regular "Haar measure" described in [1, Theorem 1] (and, from a different point of view, in [4, II.1])—or, more properly, the extension of this (weakly) Borel measure to M(G).
- III. For each S in M(G), one of the following statements must always be true:
 - (a) $\lambda S = \mu S = \nu S$ (μ is outer regular and inner regular on S).
 - (b) $\lambda S = \mu S < \nu S = \infty$ (μ is not outer regular on S).
 - (c) $\lambda S < \mu S = \nu S = \infty$ (μ is not inner regular on S).
- IV. If ν_1 were a right Haar measure, one could proceed in the same manner to obtain right-invariant measures on M(G) with the desired properties, except that right cosets of H and right translates of sets would play the rôle given to left cosets and left translates in Theorem 1.
- 3. Lemma 3. Let G be an uncountable Abelian group. Then G contains a subgroup K such that |K| = |G/K| = |G|.

PROOF. Let r = |G|.

- Case 1. Suppose $r = r_0(G)$, the torsion-free rank of G. Then there exists a maximal independent torsion-free subset X of G such that |X| = r. Let $K = \{\{x^2 : x \in X\}\}$. As in [4, II.8], |K| = |G/K| = r.
- Case 2. Suppose G is torsion. Since G is uncountable, it must have a subgroup G_1 of bounded order such that $|G_1| = r$. By (A.25) of [2], G_1 is the direct sum of cyclic groups; thus $G_1 = [Y]$ where Y is an independent set and |Y| = r. Let $Y = Y_1 \cup Y_2$ where $Y_1 \cap Y_2 = \emptyset$ and $|Y_1| = |Y_2| = r$; let $K = [Y_1]$. Then $|K| = r \ge |G/K| \ge |G_1/K| \ge |Y_2| = r$.
- Case 3. Suppose $r > r_0(G)$. Let X be a maximal torsion-free independent set; let G' = G/[X]. G' is a torsion group and |G'| = r, so by

Case 2 G' has a subgroup K' such that |K'| = |G'/K'| = r; let K be the subgroup of G such that K' = K/[X]. Clearly |K| = r, and by the Third Isomorphism Theorem |G/K| = |G'/K'| = r.

Theorem 2. Let G be a locally compact Abelian group which is not σ -compact. Then G has an open subgroup H such that H is not σ -compact and G/H is uncountable.

PROOF. Let U be an open σ -compact subgroup of G; then G' = G/U is uncountable and by Lemma 3 has a subgroup K' such that |K'| = |G'/K'| = |G'|. Let H be the subgroup of G such that K' = H/U. Then H is not σ -compact since H/U is a cover of H by uncountably many pairwise disjoint open sets. Also, |G/H| = |G'/K'| = |G'|.

THEOREM 3. Let G be a locally compact group which is not the union of fewer than \aleph_2 compact sets. Then G has an open subgroup H such that H is not σ -compact and G/H is uncountable.

PROOF. Let U be a σ -compact open subgroup of G and let H be a subgroup of G generated by a collection of $\mathbf{\aleph}_1$ cosets of U. H has the desired properties.

4. Examples (the group $R_d \times R$). Let G be the group $R_d \times R$, where R_d is the discrete reals and R is the reals with the usual topology. Let λ_0 be Lebesgue measure on R, and for $r \in R_d$, let $\lambda_r(S) = \lambda_0(\{x: (r, x) \in S\})$. Define

$$\lambda S = \sum \{ \lambda_r(S) \colon r \in R_d \}.$$

Case 1. (From [3, §12.58]). Let $H = \{0\} \times R$ and $\nu_1 = \lambda \mid M(H) = \text{Lebesgue measure on } \{0\} \times R$. Here H is σ -compact and G/H is uncountable, being isomorphic to R_d . We have $\lambda = \mu$, and $\mu F_1 = 0$, $\nu F_1 = \infty$, where $F_1 = R_d \times \{0\}$.

Case 2. Let K be the subgroup of R_d generated by a Hamel basis over Q; let $H = K \times R$. In this case, H is not σ -compact and G/H is uncountable. For $S \subseteq M(G)$, we have

$$\nu S = \inf \{ \lambda U \colon U \text{ open, } U \supset S \},$$

 $\nu_1 = \nu \mid M(H),$

as natural choices for Haar measures. Here,

$$\mu S = \sum \{\nu(S \cap (\{r\} \times R)) \colon r \in K_2\}$$

where K_2 is a subgroup of R_d such that $R_d = K_2 \oplus K$. Let $F_2 = K_2 \times \{0\}$; then $\lambda F_1 = 0$, $\mu F_1 = \nu F_1 = \infty$ and $\lambda F_2 = \mu F_2 = 0$, $\nu F_2 = \infty$.

REFERENCES

- 1. S. K. Berberian, Counterexamples in Haar measure, Amer. Math. Monthly 73 (1966), 135-140.
- 2. E. Hewitt and K. A. Ross, Abstract harmonic analysis. I: Structures of topological groups. Integration theory. Group representations, Academic Press, New York and Springer-Verlag, Berlin, 1963. MR 28 #158.
- 3. E. Hewitt and K. R. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 32 #5826.
- 4. H. L. Peterson, Regular and irregular measures on groups and dyadic spaces, Pacific J. Math. 28 (1969), 173-182.

University of Connecticut