
ON DISCONJUGACY CRITERIA

PHILIP HARTMAN1

1. Disconjugacy criteria. In the differential equation,

(1.1)        *<»> 4- p0(l)x^-^ 4- • • • + pn_2(l)x' 4- ^n_i(/)x = 0,

let the coefficients be real-valued and summable on an interval I.

The equation (1.1) is said to be disconjugate on I if no solution

x(t)f^0 has n zeros, counting multiplicities, on I. The object of this

note is to derive disconjugacy criteria, for a compact interval I

= [a, b] of length |f| =b—a, generally related to conditions of the

type

(1-2) E^UNI^II =i.
*=o

where -40, • • • , -4„-i are constants and || • • • || is the L1(I) norm.

For m = 2, a known disconjugacy condition is

(1-3) 2-1||/>0||i4-2-*|f| • H^+H Sl,

where r+ = max(0, r) and r- = max(0, — r), and follows from Levin's

condition [s],

(1.4) (exp IN!i) Ml S4/|7|,

by virtue of e~*i£l — x for x^O; cf. also [o]. If p0=0, then (1.3) and

(1.4) reduce to a condition of Lyapunov; e.g., [l, p. 346].

Introduce the constants

(1.5) Cn = C(n - 1, [n/2])/n\,

where [r ] is the largest integer not exceeding r and C(n,j) =»!//!(« —j)!

is the binomial coefficient. These numbers & = 1, C2 = l/2, Cj = l/3,

C4=l/8, • • • appear in Levin [3], [4] and Hukuhara [2]. Hukuhara

[2] gives a disconjugacy criterion related to (1.2) with

(1.6) Ao = 1    and    Ak = 2-*C*       for k = 1, •••,»- 1.

Using his method, this will be sharpened to (1.12) below.

In [0], Nehari states that (1.2) is a disconjugacy criterion if
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(1.7) Ak = 2-*-1       for k = 0, • • • , n - 1.

It has been noted by Nehari (see [o]) that his proof of this assertion

is incorrect and that the validity of the assertion is undecided. It will

be seen that Nehari's statement is correct and, in fact, is contained

in (1.9) below. For, on the one hand, a simple calculation shows that

iCk/A)[k/ik + l)]k-1^2-k~1 for k = l, 2, 3 and, on the other hand, it

is easy to verify that C*/4<2-*-1 if &^4. (In [7], Zaiceva asserts a

refinement of criterion (1.7), but her inequality (16) on p. 765 does

not seem correct, and this invalidates her proof.)

I would like to thank Professor A. M. Fink for calling my attention

to the question of the validity of the criterion (1.7) and for a helpful

correspondence in the course of the preparation of this note.

Theorem 1. The following are disconjugacy criteria for (1.1) on

I=[a,b]:

(i) po, • • - , pn-i satisfy

(1.8) (exp \ \po\\) Y (Ct/4)[V(* + 1)M A" NI = 1,

in particular,

(1.9)       §||#o|| + E(ct/4)[*/(* + DM/I'M =" l;
k=l

iii) if, in addition, p lit) ^ • ■ • =pm_iit) = 0for somem,2f=,m^=n — l,

then (1.8) can be relaxed to

(1.10)     exp(i \\po\\) Y iCk/2^)[k/ik + m)]k-™\l\k\\pk\\ ik 1;
k=m

(iii) po, ■ ■ ■ , pn-i satisfy

(«p|W|) JE[(A/2*+i) | j |*||pJJ],
(LID U=1

+1E E CjCujWij + «-+* 11\*» M -\\pkn = 1;
i*k )

(iv) the quantities Qi, Q2 satisfy

(L12) max(Qi, Q2) < 1,

where
/ f (a+6)/2 \   n-1 /• (0+6)/2

(1.13)     C-i = (expJ Po+dt\YCk2-"\l\k j \pk\dt,
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(1.14)     Q2 = (exp f podt) E Cut* | / |* f \pk\dt.
\ J  fa+6)/2 /   k~l J  (a+6)/2

2. The Levin inequalities. Theorem 1 will be deduced from the

following inequalities given by Levin [4] and Hukuhara [3]. (The

latter also makes the assumption a^a0^ai.)

Lemma 2.1„. Let »^1, 1= [a, b], and x(t)ECn(I). Let x(t),

x'(t), • • • , x(n_1)(0 vanish at points of I, say

(2.1) x™(ak) =0       for k = 0, • • • , » - 1,

and let

(2.2) a | a, ^ ■ • ■ ̂  a„_i ^ 6.

FAen

(2.3) max | x(t) |   ^ MC„ \ 11",    where    M = max | xM \
i i

and Cn is defined by (1.5). Cn cannot be replaced by a smaller constant.

Levin's proof [4] uses some functional analysis and the Krein-

Milman theorem on extreme points of convex sets. Hukuhara's proof

[2 ] is an elementary calculus proof. We shall give a different, short,

elementary proof which will yield sharper inequalities (cf. (2.6)-(2.7),

(2.8)-(2.9), (3.5) and (4.3) below) and has the following consequence:

Corollary 2.1. The assertion (2.3) in Lemma 2.1n can be strength-

ened to

(2.4) f   \x'(t)\dl^MCn\l\",
J a

whether or not x(t) has a zero t = a0 on I.

Remark. It is easy to verify that equality in (2.3) holds if | x(re)(/) |

= M, ak = a„-i lor k^n/2, ak = a0 for k<n/2, and a = a0, & = an-i-

Furthermore, the proof of Lemma 2.2 will imply that equality can-

not hold in any other cases; cf. (2.6„) — (2.7„t) and (3.5) below.

Lemma 2.2„. Strengthen (2.2) in Lemma 2.1n to

(2.5) a = flo ̂  ■ • • ^ an-i ^ b    and let a„ = b.

Then, on [a, Oo],

| x'(s) \ds ^  I     | x™(s) | (s - ty-Hs/(n - 1)!;
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and, on [ak, ak+i], for k — 0, • ■ ■ , n — 1,

in - 2)! | x(t) |   g (« - 2)! f   | *'(*) I ds

(2.7nt) g £ C(» - 2, /) fa+\t- r)'Fj(r)dr
3-0 J aj

+ C(n -2,k)f(t- r)kFk(r)dr,

where

Fj(r) =f"\ xM(s)| (s-r)n~2-'ds.

In particular, if M = max| xM \ on [a, b], then

(2.8) n\\ x(t) |   ^ M[(b - t)n - (b - a0)n]       on [a, a0],

(2.9) w! | x(t) |   ^ M[(b - ao)n - (b - t)n]  max C(n - 1,/)

on [ak, ak+i] for k = 0, 1, • • • , n — 1.

Although the inequalities (2.6„), (2.7n*) may not be in a very use-

ful form, the point of these relations is that they have a simple proof

and imply (2.8), (2.9) and Lemma 2.1.

3. Proof of Lemma 2.2. On (2.6„). The relation (2.6i) is trivial on

[a, a0]. Assume w^2 and (2.6„_i). Thus (2.6„_i) applied to x'it) gives

(3.1)     | x'it) I   ^   f   I xMis) I is - ty-2ds/in -2)\        on [a, a,].

For a^t^ao, the inequality

| x(t) |   g  f ° | «'(r) | <P g  f   | x'(r) | <fr

combined with (3.1) gives (2.6„).

On (2.1 nk). The inequality (3.1) and \x(t)\ ^faJ\x'(r)\dr for t^a0

gives (2.7„o) for n = 2, 3, ■ ■ ■ . Assume (2.1 nk) for fixed &S:0 and all

« = ^4"2. We shall verify (2.7re,i+i). From (2.1nk) for < = a*+i,

(»- 2)! I \x'(s)\ds

(3.2)
* /» «;+l

g E C(» - 2,/) (<z*+i - rVFj(r)dr;

and (2.7„_i,i) applied to x' gives
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(n - 3)! | x'(v) |   ^ E C(n - 3, j) f+\v- r)'Fj+i(r)dr

(3.3) y-° °;+i

+ C(« - 3, *)  f *   (» - r)kFk+i(r)dr
J «*+l

for ai+i^f^ai+2 and &=0, • • • , « —2. A quadrature of (3.3),

(» - 2)! j       I x'(v) | <fo
"^ "4 + 1

(3.4) ^t,C(n- 2, j) f ' +\(t - r)t - (ak+i - r^F^dr
t-l J aj

4- C(n - 2, h 4- 1)  f     (ai+i - r)«+lFk+i(r)dr,
J "k+i

together with (3.2) gives (2.7„,*+i).

On (2.8). By (3.1), |x'(0| ^M(b-t)»-y(n-l)\ on [a, aj. A
quadrature over [<, a0] gives (2.8).

0« (2.9). The right side of (2.1 nk) is not decreased if |x(n)(5)| is

replaced by M and, in the integrand, t is replaced by b. Thus, on

[ak, a,fc+ij,

ui | x(t) |   ^MJZC(n- 1, j)[(b - aj)" - (b - a/+1)»]
(3.5) j=0

+ MC(n - 1, k)[(b - ak)n -(b- /)•].

This imples (2.9) and completes the proof of Lemma 2.2.

4. Proof of Corollary 2.1. The proof of (2.1 nk) shows that if

a^ao^ai and ak^t^ak+i, then

»! f   | x'(s) [ds^Mj: C(n - l,i)[(i - a,)" - (b - fly+1)"]
(4.3) J ao y_0

4- MC(n - 1, k)[(b - o*)» - (6 - /)»],

whether or not x(a0)=0. This inequality, with a=a0, k = n — l, and

t = b=an, implies (2.4), since n\ C„ = max C(n — l,j) for O^j^n — 1.

5. Proof of Theorem 1. Suppose that (1.1) has a solution x(t)f^0

with n zeros, counting multiplicities, on [a, b\. It will be shown that

the inequalities (1.8), (1.10), (1.11) and (1.12) cannot hold.

We can suppose that there are numbers

a = ffo g oi ^ • ■ • ^ a„_i = 6„_i ^ bn-t ^ • • ■ ̂  bi ^ b0 = 6,
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such that xm(t)=0 if t = ak and t = bk. Put c = an-i = bn-i, a<c<b.

The analogues of Lemma 2.1„_i are applicable to each of the inter-

vals [a, c], [c, b]. Actually, the analogues will be applied to x{H~1~k),

rather than to x with n — 1 replaced by k, k = l, • • • , n — 2. Let

M = max|x("-l)(/)| on [a, c] and let |x("-l)(r)| =M, a<r<c.

Write (1.1) as

(^"-"exp I   pods) + (exp j   p0ds\ Y /**W*<B~1~*) = 0.

An integration over the interval [r, c] gives

/» r n—1 /» c  / /» t \

pods < Y max I xl"-l-k) |  I    I exp I    pods ) \ pk | d/.
a 4-1    lo-c] ^ r     \ J a /

By Lemma 2.1* and

exp I   />0^5 g exp I    />o+^       for r ^ < g c,

we get

(5.1) 1 < (exp J    po+ds) Y Ck(c - a)k J    | pk \ dt.

Similarly,

(5.2) 1 < (exp J  Pods\ Y Ck(b - c)k J   \ pk\ dt.

On (1.12). Since either c^(a-fP)/2 or c^ia + b)/2, that is,

c-a^(b-a)/2 or b-c^(b-a)/2, (5.1) and (5.2) imply that either

<2i>lor<22>L

On (1.8). By (5.1) and (5.2), we have

1 < (exp \\p0\\) E E CjCkic - a)kib - c)'
3=1 k~l

(5.3)

|#*|*|    \pi\dt.

Note that

(5.4)        ic - a)kib - c)i g  | /|*+*/V(yfe +j)k+'       for a g c ^ 6

If m^O, then/V0'+^)2^1/4 implies that
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j'kk/(j 4- k)'+k = [jk/(j 4- k)2]mj*-™kk-m/(j 4- k)'+k~2m

^ t2m[j/(j 4- k)]^[k/(j 4- *)]*—.

If J, k^iandj, k^m^O, then

(5.6) i^V(j 4- k)*" g 2~2™[j/(j 4- »)]>—[*/(* 4- 0?~m-

The inequalities (5.3), (5.4) and (5.6), with i = m = l, show that

1 <(exp||#0||)   VL (Ck/2)[k/(k + l)]k~i\ l\k f° \pk\dt\

X | E (£,/2)\j/(j + l)]'-11 / |> J*   I Pi I <*A .

Take the square root of both sides of this inequality and use the

arithmetic-geometric mean inequality, applied to the last two factors,

to obtain

1 < (exp } ||f o||) E «V4)[*/(* + l)]*-11 /1* f   \pk\ dt.
A=l J a

On (1.10). This is proved in the same way using i = m in (5.6).

On  (1.11).  Insert the inequality  (5.4)  into  (5.3), interchange j

and k, and add the resulting inequalities to obtain

2 < (exp !|p0|l) E E Cfkj'kk(j + k)~i-k | 71«*
j=l   k=l

|/>*|<fcj     \p,\dt+\     \pk\dtj     \pj\dA.

The factors {  • • • } satisfy

{■•■}£ IWHWI        for allj, A;
but if j = k,

{•••}-2j    |#*|* J    | />* I * ^ K|WI)2        forj-*.

The last three formula lines contradict (1.11) and complete the proof

of Theorem 1.
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