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Let A be an analytic set of pure dimension p in a neighborhood of

the origin in C", and assume that 0 is a point of A. The Lelong Num-

ber of A at 0, denoted by «(0, A), is defined as the limit as r goes to

zero of the volume of A in a ball of radius r, center 0, divided by the

volume of a ^-dimensional linear subspace in such a ball (see [5]).

Suppose now that A is locally a complete intersection at 0, that is,

that there exists a neighborhood U of 0 and q = n — p functions/i,

• • • ,fq holomorphic on Psuch that

UC\A = [iE U\fiii) =0,i = 1, •• -,q}.

Define /: U—>C" by f=(fi, ■ • • , fq). Then for any %EU, codima
f~lifil))^q, that is, dimj^ifd)) ^p. On the other hand, by the
upper semicontinuity of dim3/_1(/(j)), [2, p. 46, Corollary 5], there

exists a neighborhood U'EU of 0 such that dimj/_1(/(j))^dimo

/_1(/(0)) =p for all iE U'. Thus the map/ is of pure fiber dimension

p on U', and so the multiplicity of/ at 0, denoted by v(0,f), is well

defined (see [4]).

It will be shown here that: first, n(0, A)^v(0,f); and second, if the

germs at 0 of/i, • ■ ■ ,fq generate the ideal of function germs at 0 zero

on A, denoted by 1(0, A), then n(0, A)=v(0,f). The first inequality

will follow from some recent results of R. Draper in [l], and the

second from the use of a generalization of Rouche's Theorem, as

proven by W. Stoll in [4]. The simple example in C2 of A = CX {o}

and/(z, w)=w2 demonstrates that equality of v(0, f) and n(0, A) is

not always possible. In the case of codimension one, the above results

were first proven by Stoll in [3].

Theorem. Let A be a pure p-dimensional analytic set in a neighbor-

hood of the origin in Cn, and suppose that 0 is a point of A. Let /i

• • • , fq be q — n—p functions holomorphic in a neighborhood U of 0

such that

UC\A = {hE U\fi(i) = 0, i=   1, • ■ -,q}.

Define /=(/,, ... , fq): J/->C«. Then »(0, A)^vi0, /). Moreover, if
the germs at 0 offi, ••-,/« generate 7(0, A), then «(0, A) = v(0,/).
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Proof. Choose a coordinate system (zi, • • • , z„) of C" such that if

A = {(0, ■ • ■ , 0, Zp+i, ■ ■ ■ ,zn)ECn\ziEC,   i = p + 1, ■ • ■ , n},

then N(~\A and NC\T both contain 0 as an isolated point, where T is

the tangent cone to A at 0. Now from Theorem 7.3 of [l], n(0, A)

equals the degree of A at 0 (as defined in [l ]). Moreover by the choice

of the coordinate system, from Theorem 6.3 of [l], it follows that the

degree of A at 0 equals i(A -N,0), where i(A -N, 0) is the intersection

multiplicity of A with N at 0. Let tt: C"XC''^CP be the projection

map. Then in this case, i(A -N, 0) is simply the covering number k of

7r| A : A—*C", that is, the degree of the Weierstrass polynomial asso-

ciated with any regular coordinate system which has Z\, - - - , zp as

its first p coordinates. Thus n(0, A) equals the covering number k.

Now consider v(0,f). By choice of N, from Theorem 7.1 of [l], it

follows that v(0,f)=v(0,f\N). Now Proposition 7.2 of [l] shall be

applied. Let 0' denote the origin in C" and 0" the origin in C. Choose

open sets U' and U" such that 0'EU'EC", 0"EU"EC", and

U' X U" C U. Define /: U' X U"-+ U' X C« by

/((zi) ■ ■ • ,zp; zp+i, ■ ■ ■ , zn)) = (zi, • • • , zp,f(zi, ■ • • , z„)).

Thenf-^W, 0"))) contains (0', 0") =0 as an isolated point, and so

/ is light in a neighborhood of 0 by upper semicontinuity. Applying

Proposition 7.2, comparing

There        M R N f q f a b

Here U" V C f 0 / 0" 0'

it follows thatK0",/0')="((0', 0")./) =K0, /), where/<,-: U"-^C* is

defined by/o'(zP+i> • • • , z„)=f(0', zp+], • • • , z„). But by definition,

v(0, f\ N)=v(0", /„,). Hence v(0, f) =v(0, f\ N)=v(0, /).
Choose a neighborhood TFC U of 0£Cn such that/ is light on W.

Choose polydiscs P and Q, 0'EPEC", 0"EQEC", such that

(i) PXQEW
(ii) ({_0'}XG)n.4 = {0}
(iii) (PX(Q-Q))r\A=0
(iv) There exists a thin analytic set DEP such that for any

aEP—D, there exists exactly k distinct points in AC\(PXQ) with

projection a. Moreover, these k points are simple points of A with

the first p coordinates providing local coordinates. Then by definition

ofKO,/)and/,KO,/)=limsup^°#{/-1(/(a))n(PX0}
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= lim sup #{ (fli, ■ ■ ■ ,ap, Zp+i, • ■ ■ , zR) G P X Q\ via)

= (af, ■ ■ ■ ,ap) and f(ax, ■ ■ ■ ,ap, zP+h • ■ • , z„) = f(a)}.

And

w(0, A) = k = lim sup#{(ai, • • • ,ap, zp+u • • • , zn)
agA.a-»0

GP X Q\f(au ■ ■ • , ap, Zp+i, ■ ■ ■ , zn) = 0 = /(a)}.

Thus w(0, A)^v(Q, f) =v(0,/).
To prove the second assertion, assume the germs of/i, • • • , /, at

0 generate 1(0, A). Shrinking the above neighborhoods W, P and Q

if necessary, assume that they satisfy conditions i-iv above and,

moreover, that/ is of pure fiber dimension p on W and that, for any

aEAC\W, the germs of fi, •••,/, at a generate I (a, A).

From Proposition 1.3 of [4], there exists an analytic set P in PXQ,

thin in PXQ, such that for any aEPXQ-T,

"(0, f) = #{ (au ■ ■ • ,ap, zp+i, • • • , Zn)

E PXQ\ f(ar, ■ ■ ■ ,ap, zp+u ■ ■ ■ , Zn) = f(a)}

where w(a) = (ai, • • • , ap).

And there exists an open set SEPXQ containing 0 such that

/_1(/(3))^(PX(5-0) = 0 for all lES. For if not, then there exists

a sequence {}n}, 3„->0, such that t1ifiln))r\iPXiQ-Q))^0. As-
sume r»G/"_1(/(an))C^(PX(Q —0). Then {r„} has a convergent sub-

sequence, which will also be denoted by {r„}. Let Jn—>r0GPX(() — Q).

But /(r„)=/(sJ-*/(0)=0. Therefore /(r„) = limit of /(f„) = 0. There-
fore ioEAr\(PX(Q — Q)), a contradiction.

Since/ is of pure fiber dimension p on W, f\ W is an open map [2,

p. 132, Proposition 4]. Thus there exists an open ball BECq with

center 0 such that B Ef(S). Let R =f~l(B)C\S, an open neighborhood

ofOGC".

Take any aER, a^ir~l(D){UT. Let 7r(u)=a. Choose Q' open

in & such that {a} XQE {a} XQ'EW. Define 7= [0, l] and

fr.Q'Xl-^C* by h(zp+1, • • • , z„; t)=f(a, zp+i, ■ • ■ , zn). Define

g: 7—>C« by g(t)=tf(a). Since / is light on W, the map ht: Q'-tC" de-
fined by ht(zp+i, • • • , z„)=/j(zp+i, ■ • • , zn; t) is light. Moreover for

&ny tEI,K1ig(t))r\(Q-Q)=0sinceg(t)EBandso{t'ifii))\iES}
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D{a}x{K1(g(t))\tEl}. Thus Rouche's Theorem, Theorem 2.7 of
[4], can be applied. Compare

There I M N m f g G

Here I Q' C« q h g Q

The theorem states that

>"! v(z, g(t), ht) is constant for t £ /,

and in particular,

£ v(z,f(a), h{) =  Z "(*, 0, Ao),

(where v(x, y, F)=0 if F(x)7*y and p(x, F) if F(x) =y, and where all

summations are extended over all zEQ).

First,

2Z v(z,f(a), hi) ^ #{(zp+i, ■ ■ ■ ,zn) EQ\ hi(zp+i, ■ - - , z„) = /(a)}

= #{(<*, Vn> • • • ,zn) £ P X Q\f(a,Zp+i, ■ ■ ■ , z„) =/(a)}

= K0,/) = K0,/)-

Second, take any z£<2 such that h0(z) =0, that is, such that/(a, z)

= 0. Then 3 = (a, z) is a simple point of A since a^D, and moreover,

the function germs at 3 of /1, • • • ,/„ generate /(j, A). Therefore the

rank of the Jacobian matrix of/= (ft, • ■ • ,fq) at 3 must be q. Hence,

from Lemma 5.2 of [4], »>($,/) = 1. Now let

L = {(a, zp+i, ■ ■ • , z„) I z,- £ C, i = £ + 1, ■ ■ • , »} •

Then L/^^4 contains 3 as an isolated point. Moreover, since the first

p coordinates provide local coordinates to A at 3, it follows that

LC\T' also contains 3 as an isolated point, where T' is the tangent

cone equal to the tangent plane of A at 3. Thus v(i,f)=v(i,f\L). But

f\L = h0, andsopfz, 0, h0)=v(i,f\L)=v(i,f) = l.
Thus v(z, 0, ho) = 1 for all z£<2 such that v(z, 0, h0)7*0. And there

are exactly k points in QC\A with projection a, that is, k points in Q

such that v(z, 0, ho)7*0. Therefore n(0, A)=k="%2v(z, 0, h0)

-2>(«,/(a), hi)^v(0,f). Hence n(0, A)=v(0,f).
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